Алканы с перманганатом калия


Химические свойства алканов | CHEMEGE.RU

Алканы – это предельные углеводороды, содержащие только одинарные связи между атомами С–С в молекуле, т.е. содержащие максимальное количество водорода.

Строение алканов

Гомологический ряд

Получение алканов

Химические свойства алканов

Алканы – предельные углеводороды, поэтому они не могут вступать в реакции присоединения.

Для предельных углеводородов характерны реакции:

  • разложения,
  • замещения,
  • окисления.

Разрыв слабо-полярных связей С – Н протекает только по гомолитическому механизму с образованием свободных радикалов.

Поэтому для алканов характерны только радикальные реакции.

Алканы устойчивы к действию сильных окислителей (KMnO4, K2Cr2O7 и др.), не реагируют с концентрированными кислотами, щелочами, бромной водой.

1. Реакции замещения.

 В молекулах алканов связи С–Н более доступны для атаки другими частицами, чем менее прочные связи С–С.

1.1. Галогенирование.

Алканы реагируют с хлором и бромом на свету или при нагревании.

При хлорировании метана сначала образуется хлорметан:

Хлорметан может взаимодействовать с хлором и дальше с образованием дихлорметана, трихлорметана и тетрахлорметана:

Химическая активность хлора  выше, чем активность брома, поэтому хлорирование протекает быстро и неизбирательно.

При хлорировании алканов с углеродным скелетом, содержащим более 3 атомов углерода, образуется смесь хлорпроизводных.

Например, при хлорировании пропана образуются 1-хлорпропан и 2-хлопропан:

Бромирование протекает более медленно и избирательно.

Избирательность бромирования:  сначала замещается атом водорода у третичного атома углерода, затем атом водорода у вторичного атома углерода, и только затем первичный атом.

С третичный–Н > С вторичный–Н > С первичный–Н

Например, при бромировании 2-метилпропана преимущественно образуется 2-бром-2-метилпропан:

Реакции замещения в алканах протекают по свободнорадикальному механизму.

 Свободные радикалы R∙ – это атомы или группы связанных между собой атомов, которые содержат неспаренный электрон.

Первая стадия. Инициирование цепи.

Под действием кванта света или при нагревании молекула галогена разрывается на два радикала:

Свободные радикалы – очень активные частицы, которые стремятся образовать связь с каким-либо другим атомом.

Вторая стадия. Развитие цепи.

Радикал галогена взаимодействует с молекулой алкана и отрывает от него водород.

При этом образуется промежуточная частица – алкильный радикал, который в свою очередь взаимодействует с новой нераспавшейся молекулой хлора:

Третья стадия. Обрыв цепи.

При протекании цепного процесса рано или поздно радикалы сталкиваются с радикалами, образуя молекулы, радикальный процесс обрывается.

Могут столкнуться как одинаковые, так и разные радикалы, в том числе два метильных радикала:

1.2. Нитрование алканов.

Алканы взаимодействуют с разбавленной азотной кислотой по радикальному механизму, при нагревании до 140оС и под давлением.  Атом водорода в алкане замещается на нитрогруппу NO2.

При этом процесс протекает также избирательно.

С третичный–Н > С вторичный–Н > С первичный–Н

Например. При нитровании пропана образуется преимущественно 2-нитропропан:

 

2. Реакции разложения.

2.1. Дегидрирование и дегидроциклизация.

Дегидрирование – это реакция отщепления атомов водорода.

В качестве катализаторов дегидрирования используют никель Ni, платину Pt, палладий Pd, оксиды хрома (III), железа (III), цинка и др.

Уравнение дегидрирования алканов в общем виде:

CnH2n+2 → CnH2n  + (х+1)H2

При дегидрировании алканов, содержащих от 2 до 4 атомов углерода в молекуле, разрываются связи С–Н у соседних атомов углерода и образуются двойные и тройные связи.

Например, при дегидрировании этана образуются этилен или ацетилен:

При дегидрировании бутана под действием металлических катализаторов образуется смесь продуктов. Преимущественно образуется бутен-2:

Если бутан нагревать в присутствии оксида хрома (III), преимущественно образуется бутадиен-1,3:

Алканы с более длинным углеродным скелетом, содержащие  5 и более атомов углерода в главной цепи, при дегидрировании образуют циклические соединения.

При этом протекает дегидроциклизация – процесс  отщепления водорода с образованием замкнутого цикла.

Пентан и его гомологи, содержащие пять атомов углерода в главной цепи, при нагревании над платиновым катализатором образуют циклопентан и его гомологи:

Алканы с углеродной цепью, содержащей 6 и более атомов углерода в главной цепи, при дегидрировании образуют устойчивые шестиатомные циклы, т. е. циклогексан и его гомологи, которые далее превращаются в ароматические углеводороды.

Гексан при нагревании в присутствии оксида хрома (III) в зависимости от условий может образовать циклогексан и потом бензол:

Гептан при дегидрировании в присутствии катализатора образует метилциклогексан и далее толуол:

2.2. Пиролиз (дегидрирование) метана.

При медленном и длительном нагревании до 1500оС метан разлагается до простых веществ:

Если процесс нагревания метана проводить очень быстро (примерно 0,01 с), то происходит межмолекулярное дегидрирование и образуется ацетилен:

Пиролиз метана – промышленный способ получения ацетилена.

2.3. Крекинг.

Крекинг – это реакция разложения алкана с длинной углеродной цепью на алканы и алкены с более короткой углеродной цепью.

Крекинг бывает термический и каталитический.

Термический крекинг протекает при сильном нагревании без доступа воздуха.

При этом получается смесь алканов и алкенов с различной длиной углеродной цепи и различной молекулярной массой.

Например, при крекинге н-пентана образуется смесь, в состав которой входят этилен, пропан, метан, бутилен, пропилен, этан и другие углеводороды.

Каталитический крекинг проводят при более низкой температуре в присутствии катализаторов. Процесс сопровождается реакциями изомеризации и дегидрирования. Катализаторы каталитического крекинга – цеолиты (алюмосиликаты кальция, натрия).

3. Реакции окисления алканов.

Алканы – малополярные соединения, поэтому при обычных условиях они не окисляются даже сильными окислителями (перманганат калия, хромат или дихромат калия и др.).

3.1. Полное окисление – горение.

Алканы горят с образованием углекислого газа и воды. Реакция горения алканов сопровождается выделением большого количества теплоты.

CH4 + 2O2  → CO2 + 2H2O + Q

Уравнение сгорания алканов в общем виде:

CnH2n+2 + (3n+1)/2O2 → nCO2 + (n+1)H2O + Q

При горении алканов в недостатке кислорода может образоваться угарный газ СО или сажа С.

Например, горение пропана в недостатке кислорода:

2C3H8 + 7O2 → 6CO + 8H2O

Промышленное значение имеет реакция окисления метана кислородом до простого вещества – углерода:

CH4 + O2 → C + 2H2O

Эта реакция используется для получения сажи.

3.2. Каталитическое окисление.

  • Каталитическое окисление бутана – промышленный способ получения уксусной кислоты:

  • При каталитическом окислении метана кислородом возможно образование различных продуктов в зависимости от условий проведения процесса и катализатора. Возможно образование метанола, муравьиного альдегида или муравьиной кислоты:

  • Важное значение в промышленности имеет паровая конверсия метана: окисление метана водяным паром при высокой температуре.

Продукт реакции – так называемый  «синтез-газ».

4. Изомеризация алканов.

Под действием катализатора и при нагревании неразветвленные алканы, содержащие не менее четырех атомов углерода в основной цепи, могут превращаться в более разветвленные алканы.

Например, н-бутан под действием катализатора хлорида алюминия и при нагревании превращается в изобутан:

 

АЛКАНЫ (ПАРАФИНЫ) — Студопедия

ЛАБОРАТОРНАЯ РАБОТА 1

КАЧЕСТВЕННЫЕ РЕАКЦИИ

ОРГАНИЧЕСКИХ ВЕЩЕСТВ

Часть 1

Качественные реакции углеводородов

АЛКАНЫ (ПАРАФИНЫ)

    Модель молекулы пентана   Все связи С-С и С-Н в молекулах алканов простые (одинарные).   Все валентности атомов углерода, не занятые на образование связи С-С, направлены на связь с атомами водорода.   Чтобы вступить в химическую реакцию, алкан должен разорвать связь С-С или С-Н, а это сделать непросто (нужно затратить много энергии).  

Вот поэтому алканы и не реагируют при обычных условиях с такими активными веществами, как серная и азотная кислоты, металлический натрий, перманганат калия.

За это алканы называют «химическими мертвецами», да и другое их название ― парафины ― происходит от латинского «parum affinis», что означает не терпящие сродства.

Алканы вступают в реакции только в жестких условиях, например, при ярком освещении, сильном нагревании, то есть тогда, когда подводится энергия, необходимая для разрыва связи С-С или С-Н, например:

В реакции с бромной водой и перманганатом калия алканы не вступают.

АЛКЕНЫ

(ЭТИЛЕНОВЫЕ УГЛЕВОДОРОДЫ, ОЛЕФИНЫ)

        Модель молекулы этилена. Показана двойная связь.       Зеленым цветом показано распределение электронной плотности в молекуле этилена.  

Благодаря присутствию двойной связи алкены гораздо более химически активны, чем алканы. Основные типы химических реакций алканов - это присоединение, окисление и полимеризация.


Алкены легко присоединяют бром; например, пропилен превращается в 1,2-дибромпропан:

Для реакции можно использовать бромную воду – раствор брома в воде. Бромная вода в ходе реакции обесцвечивается.

Кроме того, алкены окисляются перманганатом калия KMnO4, причем

если реакцию проводят в присутствии серной кислоты, то раствор перманганата обесцвечивается. Если реакцию проводить в нейтральной среде, выпадает коричневый осадок MnO2:

Фиолетовая окраска KMnO4 в ходе реакции исчезает.

Органический продукт реакции – двухатомный спирт пропандиол-1,2.

АЛКИНЫ

(АЦЕТИЛЕНОВЫЕ УГЛЕВОДОРОДЫ)

  Модель молекулы ацетилена. Показана тройная связь.   Модель молекулы бутина-2. Обратите внимание на линейную форму молекулы.

Как и алкены, алкины склонны к реакциям присоединения, окисления и полимеризации. Следовательно, реакции с бромной водой и раствором перманганата калия являются качественными реакциями на алкины.


Отличить ацетиленовый углеводород от этиленового позволяет реакция с аммиачным раствором оксида серебра:

Образующийся ацетиленид серебра дает осадок бледно-желтого цвета.

алкенов и марганата калия (VII) (перманганат)

Если продукт имеет одну углеводородную группу и один водород

Например, предположим, что первая стадия реакции была:

В этом случае первая молекула продукта имеет метильную группу и водород, присоединенный к карбонильная группа. Это другой вид соединения, известного как альдегид.

Альдегиды легко окисляются с образованием карбоновых кислот, содержащих группу -COOH.Поэтому на этот раз реакция пойдет на следующую стадию с получением этановой кислоты, CH 3 COOH.

Кислотная структура была немного перевернута, чтобы она больше походила на то, как мы обычно рисуем кислоты, но общий эффект заключается в том, что между углеродом и водородом образовался кислород.

Общее влияние манганата калия (VII) на этот вид алкена составляет:

Очевидно, что если бы атом водорода был присоединен к обоим углеродам на концах углерод-углеродной двойной связи, вы бы получили две молекулы карбоновой кислоты, которые могут быть одинаковыми или разными, в зависимости от того, были ли одинаковые алкильные группы или разные.

Поиграйте с этим, пока вы не будете довольны этим. Нарисуйте несколько алкенов, каждый из которых имеет водород, присоединенный на обоих концах углерод-углеродной двойной связи. Различные алкильные группы - иногда одинаковые на каждом конце двойной связи, иногда разные. Окислите их, чтобы сформировать кислоты, и посмотрите, что вы получите.

Если продукт имеет два атома водорода, но не содержит углеводородной группы

Вы могли ожидать, что это произведет метановую кислоту, как в уравнении:

Но это не так! Это потому, что метановая кислота также легко окисляется раствором калия манганата (VII).На самом деле, он окисляет все это вплоть до углекислого газа и воды.

Таким образом, уравнение в таком случае может быть, например:

Точная природа другого продукта (в этом примере, пропанона) будет варьироваться в зависимости от того, что было присоединено к правому углероду в двойной связи углерод-углерод.

Если бы на обоих концах двойной связи было два атома водорода (другими словами, если бы у вас был этен), то все, что вы получили бы, - это углекислый газ и вода.

 

Резюме

Подумайте об обоих концах углерод-углеродной двойной связи по отдельности, а затем объедините результаты.

  • Если на одном конце связи две алкильные группы, эта часть молекулы даст кетон.

  • Если есть одна алкильная группа и один водород на одном конце связи, эта часть молекулы даст карбоновую кислоту.

  • Если на одном конце связи находятся два атома водорода, эта часть молекулы даст углекислый газ и воду.

 

Какой смысл всего этого?

Возвращение к результатам поможет вам определить структуру алкена. Например, алкен C 4 H 8 имеет три структурных изомера:

Подумайте, какие из них дадут каждый из следующих результатов, если их обработать горячим концентрированным раствором манганата калия (VII). Приведенные выше изомеры представляют собой , , а не , в порядке A, B и C.

Не читайте ответы в зеленой рамке, пока не попробуете.

  • Изомер А дает кетон (пропанон) и диоксид углерода.

  • Изомер B дает карбоновую кислоту (пропановую кислоту) и диоксид углерода.

  • Изомер C дает карбоновую кислоту (этановую кислоту).

перманганат калия алканы с - Большая Химическая Энциклопедия Алкены отличаются от алканов своей растворимостью в концентрированной серной кислоте и их характерными реакциями с разбавленным раствором перманганата калия и с бромом. Характеристика может быть основана на определении их физических и / или спектральных свойств. Характеристика с помощью твердых аддуктов с нитрозилхлоридом довольно широко использовалась в области терпенов. Получение аддуктов с 2,4-динитробензолсульфенилхлоридом описано ниже (см. Также раздел 8.1.1, с. 1128). [Pg.1235]

Реакция с перманганатом калия. Разбавленные или щелочные растворы KMn04 окисляют ненасыщенные соединения. Алканы и ароматические соединения обычно не вступают в реакцию. Свидетельство того, что реакция произошла, наблюдается по потере пурпурного цвета KMn04 и образованию коричневого осадка диоксида марганца, Mn02. [Pg.289]

A10% раствор перманганата калия ярко-фиолетовый. Когда этот реагент реагирует с олефином, пурпурный цвет исчезает, и может быть видна тонкая коричневая суспензия диоксида марганца.Хотя мы будем использовать перманганат просто для того, чтобы различать алкены и алканы, он также является важным препаративным реагентом ... [Pg.165]

Решение Известно, что алканы и бензол довольно инертны к окислению перманганатом калия в водной щелочи. Однако алкильные и арильные группы, присоединенные к бензольным кольцам, могут быть окислены до карбоксильных (-СООН) групп горячим щелочным перманганатом. Например. [Pg.402]

Алканы не являются особенно реактивными, они не легко реагируют с разбавленными кислотами, щелочами или окислителями, такими как перманганат калия и дихромат натрия.Они, однако, сгорают в большом количестве кислорода с образованием углекислого газа и воды ... [Pg.314]

Когда происходит реакция, пурпурный цвет перманганат-иона заменяется коричневым осадком диоксида марганца. Из-за этого изменения цвета, реакция может использоваться в качестве химического теста, чтобы отличить алкены от алканов, которые обычно не реагируют с перманганатом калия. [Pg.97]

Комбинация известного 1,4-добавленного катализируемого фторидом добавления первичных нитроалканов к aP-ненасыщенным кетонам с использованием перманганата калия на силикагеле в качестве эффективного реагента для реакции Nef обеспечивает привлекательный путь к 1,4-дикетоны (схема 46).Стратегия предлагает большой потенциал, но ... [Pg.85]


.
Перманганат калия (Kmno4) | Использование, физические и химические свойства перманганата калия

Что такое перманганат калия?

  • Перманганат калия - это универсальное химическое соединение пурпурного цвета.

  • Это калиевая соль марганцевой кислоты.

  • Также известный как перманганат калия, он имеет много других названий, таких как минерал хамелеон, кристаллы Конди и гипермаган.

  • Перманганат калия был впервые произведен немецким химиком Иоганном Рудольфом Глаубером в 1659 году, но вскоре был забыт.Это было вновь открыто британским химиком Генри Конди, который производил дезинфицирующие средства, известные как «кристаллы Конди», перманганат калия стал большим успехом.

  • Обладает окислительными свойствами, поэтому нашел широкое применение в медицинской и химической промышленности.

  • Его химическая формула KMnO4.

Физические свойства перманганата калия - KMnO4

  • Это химическое соединение ярко-фиолетового или бронзового цвета.

  • Имеет плотность 2.7 г / мл и его молярная масса составляет 158,034 г / моль.

  • Состав не имеет запаха, то есть не имеет запаха, но имеет сладкий вкус.

  • Имеет высокую температуру плавления 2400 ° С.

  • В основном встречается в виде порошка, кристаллов или таблеток.

Химические свойства перманганата калия

  • Перманганат калия растворим в ацетоне, воде, пиридине, метаноле и уксусной кислоте.Он также легко растворим в неорганических растворителях.

  • Имеет насыщенный фиолетовый цвет в концентрированном растворе и розовый цвет в разбавленном растворе.

Концентрированные и разбавленные растворы перманганата калия

  • Не горюч, но поддерживает горение других веществ.

  • В нормальных условиях это высокостабильное соединение, но при нагревании разлагается с образованием MnO2 и выделяет кислород.

2KMnO4 ∆ → K2MnO4 + MnO2 + O2

  • Это сильный окислитель (соединение, которое может легко переносить кислород в другие вещества), образующий темно-коричневый диоксид марганца (MnO2), который окрашивает все, что является органические.Он может легко принимать электроны от других веществ.

  • Реагирует бурно с серной кислотой, что приводит к взрыву.

  • Немедленно реагирует с глицерином и простыми спиртами с образованием пламени и дыма.

Структура перманганата калия - KMnO4

  • Перманганат калия представляет собой ионное соединение, состоящее из катиона калия (K +) и перманганатного аниона (MnO4-).

  • В перманганатном анионе (MnO4-) атом марганца связан с четырьмя атомами кислорода через три двойные связи и одну одинарную связь.Его структура может быть написана как ниже.

  • Степень окисления марганца в этой соли +7.

  • Кристаллическая структура твердого KMnO4 является ромбической. Каждая структура MnO4 присутствует в тетраэдрической геометрии.

Реакции перманганата калия (KMnO4)

Большинство реакций с перманганатом калия представляют собой окислительно-восстановительные реакции (химическая реакция, в которой одно вещество окисляется, а другое восстанавливается).

KMnO4 может окислять многие неорганические соединения.Среда раствора играет важную роль в определении продуктов реакции.

2KMnO4 + 5Na2SO3 + 3h3

.

Смотрите также