Электролиз раствора гидроксида калия


Электролиз расплавов и растворов (солей, щелочей, кислот).

Что такое электролиз? Для более простого понимания ответа на этот вопрос давайте представим себе любой источник постоянного тока. У каждого источника постоянного тока всегда можно найти положительный и отрицательный полюс:



Подсоединим к нему две химически стойких электропроводящих пластины, которые назовем электродами. Пластину, присоединенную к положительному полюсу назовем анодом, а к отрицательному катодом:



Далее, представьте, что у вас есть возможность опустить эти два электрода в расплав хлорида натрия:



Хлорид натрия является электролитом, при его расплавлении происходит диссоциация на катионы натрия и хлорид-ионы:

NaCl = Na+ + Cl

Очевидно, что заряженные отрицательно анионы хлора направятся к положительно заряженному электроду – аноду, а положительно заряженные катионы Na+ направятся к отрицательно заряженному электроду – катоду. В результате этого и катионы Na+ и анионы Cl разрядятся, то есть станут нейтральными атомами. Разрядка происходит посредством приобретения электронов в случае ионов Na+ и потери электронов в случае ионов Cl. То есть на катоде протекает процесс:

Na+ + 1e = Na0,

А на аноде:

Cl − 1e = Cl

Поскольку каждый атом хлора имеет по неспаренному электрону, одиночное существование их невыгодно и атомы хлора объединяются в молекулу из двух атомов хлора:

Сl∙ + ∙Cl = Cl2

Таким образом, суммарно, процесс, протекающий на аноде, правильнее  записать так:

2Cl − 2e = Cl2

То есть мы имеем:

Катод: Na+ + 1e = Na0

Анод: 2Cl − 2e = Cl2

Подведем электронный баланс:

Na+ + 1e = Na0 |∙2

2Cl − 2e = Cl2 |∙1<

Сложим левые и правые части обоих уравнений полуреакций, получим:

2Na+ + 2e + 2Cl − 2e= 2Na0 + Cl2

Сократим два электрона аналогично тому, как это делается в алгебре получим ионное уравнение электролиза:

2Na++ 2Cl = 2Na0 + Cl2

далее, объединив ионы Na+  и Cl получим, уравнение электролиза расплава хлорида натрия:

2NaCl(ж.)  => 2Na + Cl2

Рассмотренный выше случай является с теоретической точки зрения наиболее простым, поскольку в расплаве хлорида натрия из положительно заряженных ионов были только ионы натрия, а из отрицательных – только анионы хлора.

Другими словами, ни у катионов Na+, ни у анионов Cl не было «конкурентов» за катод и анод.

А, что будет, например, если вместо расплава хлорида натрия ток пропустить через его водный раствор? Диссоциация хлорида натрия наблюдается и в этом случае, но становится невозможным образование металлического натрия в водном растворе. Ведь мы знаем, что натрий – представитель щелочных металлов – крайне активный металл, реагирующий с водой очень бурно. Если натрий не способен восстановиться в таких условиях, что же тогда будет восстанавливаться на катоде?

Давайте вспомним строение молекулы воды. Она представляет собой диполь, то есть у нее есть отрицательный и положительный полюсы:



Именно благодаря этому свойству, она способна «облеплять» как поверхность катода, так и поверхность анода:



При этом могут происходить процессы:

Катод:

2H2O + 2e = 2OH + H2

Анод:

2H2O – 4e = O2 + 4H+

Таким образом, получается, что если мы рассмотрим раствор любого электролита, то мы увидим, что катионы и анионы, образующиеся при диссоциации электролита, конкурируют с молекулами воды за восстановление на катоде и окисление на аноде.

Так какие же процессы будут происходить на катоде и на аноде? Разрядка ионов, образовавшихся при диссоциации электролита или окисление/восстановление молекул воды? Или, возможно, будут происходить все указанные процессы одновременно?

В зависимости от типа электролита при электролизе его водного раствора возможны самые разные ситуации. Например, катионы щелочных, щелочноземельных металлов, алюминия и магния просто не способны восстановиться в водной среде, так как при их восстановлении должны были бы получаться соответственно щелочные, щелочноземельные металлы, алюминий или магний т.е. металлы, реагирующие с водой.

В таком случае является возможным только восстановление молекул воды на катоде.

Запомнить то, какой процесс будет протекать на катоде при электролизе раствора какого-либо электролита можно, следуя следующим принципам:

1) Если электролит состоит из катиона металла, который в свободном состоянии в обычных условиях реагирует с водой, на катоде идет процесс:

2H2O + 2e = 2OH + H2

Это касается металлов, находящихся в начале ряда активности по Al включительно.

2) Если электролит состоит из катиона металла, который в свободном виде не реагирует с водой, но реагирует с кислотами неокислителями, идут сразу два процесса, как восстановления катионов металла, так и молекул воды:

2H2O + 2e = 2OH + H2 ­­­

Men+ + ne = Me0

К таким металлам относятся металлы, находящиеся между Al и Н в ряду активности.

3) Если электролит состоит из катионов водорода (кислота) или катионов металлов, не реагирующих с кислотами неокислителями — восстанавливаются только катионы электролита:

+ + 2е = Н2 – в случае кислоты

Men+ + ne = Me0 – в случае соли

На аноде тем временем ситуация следующая:

1) Если электролит содержит анионы бескислородных кислотных остатков (кроме F), то на аноде идет процесс их окисления, молекулы воды не окисляются. Например:

2Сl − 2e = Cl2

S2- − 2e = So

Фторид-ионы не окисляются на аноде поскольку фтор не способен образоваться в водном растворе (реагирует с водой)

2) Если в состав электролита входят гидроксид-ионы (щелочи) они окисляются вместо молекул воды:

4ОН − 4е = 2H2O + O2

3) В случае того, если электролит содержит кислородсодержащий кислотный остаток (кроме остатков органических кислот) или фторид-ион (F) на аноде идет процесс окисления молекул воды:

2H2O – 4e = O2 + 4H+

4) В случае кислотного остатка карбоновой кислоты на аноде идет процесс:

2RCOO − 2e = R-R + 2CO2

Давайте потренируемся записывать уравнения электролиза для различных ситуаций:

Пример №1

Напишите уравнения процессов протекающих  на катоде и аноде при электролизе расплава хлорида цинка, а также общее уравнение электролиза.

Решение

При расплавлении хлорида цинка происходит его диссоциация:

ZnCl2 = Zn2+ + 2Cl

Далее следует обратить внимание на то, что электролизу подвергается именно расплав хлорида цинка, а не водный раствор. Другими словами, без вариантов, на катоде может происходить только восстановление катионов цинка, а на аноде окисление хлорид-ионов т.к. отсутствуют молекулы воды:

Катод: Zn2+ + 2e = Zn0 |∙1

Анод: 2Cl − 2e = Cl2 |∙1

ZnCl2 = Zn + Cl2

Пример №2

Напишите уравнения процессов протекающих  на катоде и аноде при электролизе водного раствора хлорида цинка, а также общее уравнение электролиза.

Так как в данном случае, электролизу подвергается водный раствор, то в электролизе, теоретически, могут принимать участие молекулы воды. Так как цинк расположен в ряду активности между Al и Н то это значит, что на катоде будет происходить как восстановление катионов цинка, так и молекул воды.

Катод:

2H2O + 2e = 2OH + H2 ­­­

Zn2+ + 2e = Zn0

Хлорид-ион является кислотным остатком бескислородной кислоты HCl, поэтому в конкуренции за окисление на аноде хлорид-ионы «выигрывают» у молекул воды:

Анод:

2Cl − 2e = Cl2

В данном конкретном случае нельзя записать суммарное уравнение электролиза, поскольку неизвестно соотношение между выделяющимися на катоде водородом и цинком.

Пример №3

Напишите уравнения процессов протекающих  на катоде и аноде при электролизе водного раствора нитрата меди, а также общее уравнение электролиза.

Нитрат меди в растворе находится в продиссоциированном состоянии:

Cu(NO3)2 = Cu2+ + 2NO3

Медь находится в ряду активности правее водорода, то есть на катоде восстанавливаться будут катионы меди:

Катод:

Cu2+ + 2e = Cu0

Нитрат-ион NO3 — кислородсодержащий кислотный остаток, это значит, что в окислении на аноде нитрат ионы «проигрывают» в конкуренции молекулам воды:

Анод:

2H2O – 4e = O2 + 4H+

Таким образом:

Катод: Cu2+ + 2e = Cu0 |∙2

Анод: 2H2O – 4e = O2 + 4H+ |∙1

2Cu2+ + 2H2O = 2Cu0 + O2 + 4H+

Полученное в результате сложения уравнение является ионным уравнением электролиза. Чтобы получить полное молекулярное уравнение электролиза нужно добавить по 4 нитрат иона в левую и правую часть полученного ионного уравнения в качестве противоионов. Тогда мы получим:

2Cu(NO3)2 + 2H2O = 2Cu0 + O2 + 4HNO3

Пример №4

Напишите уравнения процессов, протекающих  на катоде и аноде при электролизе водного раствора ацетата калия, а также общее уравнение электролиза.

Решение:

Ацетат калия в водном растворе диссоциирует на катионы калия и ацетат-ионы:

СН3СООК = СН3СОО + К+

Калий является щелочным металлом, т.е. находится в ряду электрохимическом ряду напряжений в самом начале. Это значит, что его катионы не способны разряжаться на катоде. Вместо них восстанавливаться будут молекулы воды:

Катод:

2H2O + 2e = 2OH + H2

Как уже было сказано выше, кислотные остатки карбоновых кислот «выигрывают» в конкуренции за окисление у молекул воды на аноде:

Анод:

2СН3СОО − 2e = CH3−CH3 + 2CO2

Таким образом, подведя электронный баланс и сложив два уравнения полуреакций на катоде и аноде получаем:

Катод: 2H2O + 2e = 2OH + H2 |∙1

Анод: 2СН3СОО − 2e = CH3−CH3 + 2CO2 |∙1

2H2O + 2СН3СОО = 2OH + Н2+ CH3−CH3 + 2CO2

Мы получили полное уравнение электролиза в ионном виде. Добавив по два иона калия в левую и правую часть уравнения и сложив с противоионами мы получаем полное уравнение электролиза в молекулярном виде:

2H2O + 2СН3СООK = 2KOH + Н2+ CH3−CH3 + 2CO2

Пример №5

Напишите уравнения процессов, протекающих  на катоде и аноде при электролизе водного раствора серной кислоты, а также общее уравнение электролиза.

Серная кислота диссоциирует на катионы водорода и сульфат-ионы:

H2SO4 = 2H+ + SO42-

На катоде будет происходить восстановление катионов водорода H+ , а на аноде окисление молекул воды, поскольку сульфат-ионы являются кислородсодержащими кислотными остатками:

Катод: 2Н+ + 2e = H2 |∙2

Анод: 2H2O – 4e = O2 + 4H+ |∙1

+ + 2H2O = 2H2 + O2 + 4H+

Сократив ионы водорода в левой и правой и левой части уравнения получим уравнение электролиза водного раствора серной кислоты:

2H2O = 2H2 + O2

Как можно видеть, электролиз водного раствора серной кислоты сводится к электролизу воды.

Пример №6

Напишите уравнения процессов, протекающих  на катоде и аноде при электролизе водного раствора гидроксида натрия, а также общее уравнение электролиза.

Диссоциация гидроксида натрия:

NaOH = Na+ + OH

На катоде будут восстанавливаться только молекулы воды, так как натрий – высокоактивный металл, на аноде только гидроксид-ионы:

Катод: 2H2O + 2e = 2OH + H2 |∙2

Анод: 4OH − 4e = O2 + 2H2O |∙1

4H2O + 4OH = 4OH + 2H2 + O2 + 2H2O

Сократим две молекулы воды слева и справа и 4 гидроксид-иона и приходим к тому, что, как и в случае серной кислоты электролиз водного раствора гидроксида натрия сводится к электролизу воды:

2H2O = 2H2 + O2

Электролиз растворов

ЭЛЕКТРОЛИЗ РЕШЕНИЙ

 

На этой странице рассматривается электролиз водных растворов соединений. Большинство людей довольно часто встречают это на курсах химии для 14-16-летних.

 

Основные идеи

Роль воды в электролизе водных растворов электролитов

Ситуация более сложная, когда вы электролизуете раствор, а не расплав, из-за присутствия воды.

Вода сама по себе является очень слабым электролитом, потому что она в очень незначительной степени расщепляется на ионы водорода и ионы гидроксида.


Примечание: Я, конечно, упрощаю это. Вы должны знать, что ион водорода не существует сам по себе в этих обстоятельствах - он фактически присоединяется к другой молекуле воды, давая ион гидроксония, H 3 O + . Это означает символ состояния (aq).


Это означает, что на каждый электрод может приходить более одного иона, и можно выбрать, какой из них будет разряжаться.

Например, если вы электролизовали раствор хлорида натрия, ионы натрия и ионы водорода (из воды) притягиваются к катоду, а ионы хлорида и ионы гидроксида (из воды) притягиваются к аноду.

 

Электрохимическая серия

В таблице ниже перечислены несколько металлов (и водород), показывающих их склонность к потере электронов. Чем более отрицательным является значение E ° (обычно читаемое как «E-ноль»), тем левее находится положение равновесия.

Это означает, что чем больше отрицательное значение E °, тем больше у одного из этих элементов склонности к потере электронов и образованию своих ионов.

Это также означает, что что-то вроде лития будет иметь небольшую тенденцию собирать электроны для образования атомов после ионизации.

Напротив, что-то с положительным значением E ° будет неохотно терять электроны для образования ионов, но будет довольно легко заставить один из его ионов улавливать электроны, чтобы снова стать нейтральным элементом.

Итак, золото не будет очень реактивным, потому что у него очень положительное значение E °. Нелегко удалить электроны, чтобы получить ионы золота, но ионы золота снова легко превратить в металлическое золото.

Электрохимический ряд можно рассматривать как расширенный и слегка модифицированный ряд реактивности.

Все, что вам действительно нужно знать об электролизе:

  • Чем выше в электрохимическом ряду находится что-то в правой части равновесия, тем легче оно теряет электроны.

  • Чем ниже в электрохимическом ряду находится что-то в левой части равновесия, тем легче оно будет улавливать электроны.


Примечание: Для целей электролиза вам не нужно понимать, откуда берутся эти числа или к чему именно относятся равновесия.

Если вы хотите узнать больше об электрохимических рядах, включая происхождение этих чисел, вы найдете их, перейдя по этой ссылке.Это вторая страница в серии страниц, посвященных окислительно-восстановительным потенциалам, и вам, вероятно, также потребуется прочитать первую страницу. Это не обязательно для просмотра остальной части текущей страницы.



Подведение итогов

Я хочу подвести итог этому, прежде чем подробно рассматривать конкретные примеры. Важно, чтобы вы запомнили шаблоны, приведенные в следующем фрагменте.

Что происходит на катоде?

Положительные ионы притягиваются к катоду, где они захватывают один или несколько электронов и разряжаются.

Либо металл осаждается, либо водород образуется из воды. Что вы получите, зависит от положения металла в электрохимическом ряду и, в некоторых случаях, от концентрации раствора.

  • Если металл ниже водорода в электрохимическом ряду (если он имеет положительное значение E °), то вы получите металл. К таким металлам относятся медь и серебро.

  • Если металл занимает высокое место в электрохимическом ряду (если он имеет довольно отрицательное значение E °), то вы получаете водород.К таким металлам относятся магний и натрий.

  • Металлы от, скажем, свинца до цинка в электрохимическом ряду более сложные. Что получится, зависит от концентрации раствора. Если раствор достаточно концентрированный, вы получите осаждение металла. Если раствор очень разбавлен на , вы получите водород. При промежуточных концентрациях вы можете получить и то, и другое.

Чем выше элемент в электрохимическом ряду, тем легче он теряет электроны и тем труднее забирает их обратно.Гораздо легче убедить медь взять обратно электроны, чтобы превратить ион в атом, чем, скажем, сделать то же самое с литием.

Что происходит на аноде?

Использование инертных электродов, таких как платиновый или угольный

Как правило, если у вас есть галоген, вы получите галоген. Со всеми другими распространенными анионами (отрицательными ионами) вы будете получать кислород из воды.

Но концентрация здесь играет роль.Например, если у вас есть концентрированный раствор хлорида натрия, на аноде будет в основном хлор. Чем больше и больше разбавленных растворов, тем меньше хлора и больше кислорода. Очень и очень разбавленные растворы будут давать в основном кислород.

Если анод не инертен

Сложность возникает, если анод не инертен, и мы рассмотрим пару примеров этого далее на странице.

 

Некоторые примеры

Электролиз раствора сульфата меди (II) угольными электродами

Медь находится ниже уровня водорода в электрохимическом ряду, поэтому, используя приведенное выше резюме, можно предсказать, что медь будет выделяться на катоде.

Продолжая использовать приведенное выше резюме, вы можете предсказать, что кислород будет выделяться на аноде, потому что в нем нет галогена.

Именно это и происходит.

На катоде

Ионы меди (II) и ионы водорода притягиваются к отрицательному катоду. Медь находится ниже водорода в электрохимическом ряду, поэтому именно медь принимает электроны от катода.

Катод покрывается медью.

На аноде

Ионы сульфата и ионы гидроксида притягиваются к положительному катоду, но очень трудно убедить ионы сульфата отдать электроны.

Теперь все усложняется, потому что есть два способа описания анодной реакции в подобных случаях. Самый простой способ - представить это в терминах гидроксид-ионов.

Предполагая, что гидроксид-ионы разряжены

Кислород выделяется.

Проблема в том, что в растворе сульфата меди (II) будет очень мало гидроксид-ионов. Вы можете обойти это, заметив, что реакция воды, в результате которой образуются ионы водорода и гидроксида, является равновесной. Когда вы разряжаете ионы гидроксида, равновесие смещается, чтобы заменить их.

Получение кислорода непосредственно из молекул воды

Общий эффект точно такой же, как если бы вы выпустили ионы гидроксида, и водное равновесие сместилось, чтобы заменить их.Сдвиг равновесия также будет производить ионы водорода. Они, конечно, будут отталкиваться от анода.

Так что же правильно?

Это почти наверняка зависит от pH раствора. В данном конкретном случае раствор сульфата меди (II) является умеренно кислым, а это означает, что гидроксид-ионов даже меньше, чем в чистой воде, поэтому второе уравнение (вода), вероятно, будет более точным.


Примечание: Что вы делаете с этим для экзамена? Вам нужно выяснить, какую версию этих уравнений используют ваши экзаменаторы, и затем придерживаться ее - не беспокойтесь об изменении ее от примера к примеру.Вам необходимо проверить, какие из них они использовали в своих прошлых работах и ​​какая форма их предпочтительнее в их схемах оценок. Вполне вероятно, что они тоже согласятся, но вы должны быть уверены.


Подобные футляры

Любой раствор, содержащий ионы сульфата (включая разбавленную серную кислоту), будет вести себя точно так же на инертном аноде - будет выделяться кислород.

Ионы нитрата также производят кислород. Вывести гидроксид-ионы из воды (или самой воды, если вы используете это уравнение) легче, чем из нитрат-иона.

 

Электролиз раствора хлорида натрия угольными электродами

Натрий значительно превосходит водород в электрохимическом ряду, поэтому, используя приведенное выше резюме, можно предсказать, что водород будет выделяться на катоде.

Продолжая использовать приведенное выше резюме, можно предположить, что хлор (галоген) будет выделяться на аноде.

Оказывается, этот случай немного сложнее, потому что результат на аноде зависит от концентрации раствора.

На катоде

Прибывают ионы натрия и ионы водорода (из воды), но натрий настолько высок в электрохимическом ряду, что его ионы не разряжаются там, где есть выбор.

Если вы электролизуете расплавленный хлорид натрия, то выбора нет - нужно разряжать ионы натрия. Но в решении у вас есть альтернатива. К сожалению, есть два разных взгляда на это, как и на проблему с анодом, описанную выше.

Предполагая, что ионы водорода разряжаются

Выделяется водород.

Вы можете преодолеть тот факт, что в растворе не очень много ионов водорода, если вспомнить, что когда вода ионизируется с образованием ионов водорода и гидроксид-ионов, это равновесие. По мере того, как ионы водорода разряжаются, больше воды расщепляется, чтобы заменить их.

Получение водорода непосредственно из молекул воды

Как и в случае с аналогичным анодным случаем выше, как бы вы ни смотрели на него, общий эффект будет таким же.Вы получаете газообразный водород и образование ионов гидроксида - вместе с ионами водорода, когда водное равновесие смещается, чтобы заменить высвобождаемые ионы водорода.

Итак, какое уравнение вам следует использовать?

Вы должны руководствоваться тем уравнением, которое используют ваши экзаменаторы в своих вопросах или в схемах выставления оценок. На практике они, скорее всего, примут и то, и другое.

Подобные футляры

Когда вы электролизуете соединение металла над водородом в электрохимическом ряду и получаете водород, применяется тот же аргумент.Однако есть некоторые случаи, когда водород не выделяется при таких обстоятельствах, и мы рассмотрим их далее на странице.

На аноде

Ионы хлора и ионы гидроксида притягиваются к положительному аноду. На самом деле, ионы гидроксида немного легче разряжать, но в основном вы получаете хлор.

  • Если раствор хлорида натрия достаточно концентрирован, вы получите в основном хлор.

  • Если раствор хлорида натрия очень разбавлен , вы получите в основном кислород.

  • При промежуточных концентрациях вы получите смесь обоих.


Примечание: На этом уровне это то, что вам в основном просто необходимо принять. Нет никакого простого объяснения , которое я мог бы добавить, не делая эту длинную и часто сложную страницу еще хуже. Я думаю, очень маловероятно, что вам когда-либо придется объяснять причину этого на экзамене по химии на этом уровне.

Если вы столкнетесь с вопросами от экзаменаторов, которые, по-видимому, нуждаются в надлежащих объяснениях, не могли бы вы сообщить мне об этом по адресу, указанному на странице об этом сайте.Было бы полезно, если бы вы также могли точно сказать мне, что ваши экзаменаторы ожидают от вас.



Образование хлора определяется уравнением:

А образование кислорода задается одним из уравнений:

или:

Водные растворы бромидов и иодидов

В обоих случаях можно предположить, что на аноде образуется бром или йод.Уравнения аналогичны разряду ионов хлора, описанному выше.

 

Электролиз раствора хлорида натрия с использованием ртутного катода

Это хороший пример случая, когда природа электрода имеет огромное значение.

Когда-то это был основной промышленный метод производства раствора гидроксида натрия, а также хлора и водорода, но он был в значительной степени заменен более экологически чистыми методами. В прошлом были серьезные примеры опасного загрязнения из-за утечки ртути в окружающую среду.

На катоде

Когда ионы натрия и ионы водорода попадают на ртутный катод, именно ионы натрия выделяются в виде металлического натрия. Он растворяется в ртути с образованием раствора, известного как «натриевая амальгама».

Амальгама натрия вытекает из электролизера и вступает в реакцию с водой, освобождая ртуть для рециркуляции через электролизер и производя раствор гидроксида натрия и водород.

На аноде

Хлор производится, как и следовало ожидать.

 

Электролиз раствора сульфата цинка угольными электродами

Я использую соединение цинка в качестве примера довольно неожиданных результатов, которые вы получаете при электролизе растворов соединений металлов от свинца до цинка в электрохимической серии.

Все они выше водорода в электрохимическом ряду, и поэтому можно ожидать, что водород будет выделяться на катоде вместо металла. Это не то, что происходит при любой разумной концентрации растворов солей этих металлов.

На катоде

Ионы цинка захватывают электроны с катода, образуя атомы цинка, которые прикрепляются к катоду.

На аноде

Это еще один случай электролиза сульфата, и мы подробно рассмотрели его далее на странице, рассказывая об электролизе раствора сульфата меди (II).


Примечание: Опять же, не существует быстрого и простого способа объяснить, почему разряжаются ионы цинка, а не ионы водорода, и очень маловероятно, что вас попросят объяснить это на экзамене на этом уровне.

Если вы хотите узнать больше, вы можете погуглить перенапряжение . Вы можете встретить такие фразы, как «большое перенапряжение водорода». Использование слова «перенапряжение» на самом деле ничего не объясняет. Все, что он на самом деле говорит, - это то, что водород труднее разрядить, чем можно было бы ожидать, исходя из его положения в электрохимическом ряду - и мы знаем это, потому что экспериментально в том случае, о котором мы говорим, вы получаете цинк, а не водород.

Итак, если вы хотите следить за этим (почти наверняка это не обязательно для экзаменов по химии на этом уровне), поищите объяснения, объясняющие, почему значение E ° водорода не применимо в реальной ситуации электролиза раствора сульфата цинка.



Электролиз раствора нитрата серебра с использованием серебряного анода

Это пример случая, когда вы используете электрод, который химически участвует в реакции.

На катоде

Если вы электролизуете раствор нитрата серебра с использованием серебра в качестве анода, серебро будет осаждаться на любом материале, из которого сделан катод, как и следовало ожидать.

Может использоваться для серебряного покрытия.

На аноде

Но на аноде, вместо того, чтобы что-либо выгружать из раствора, серебро из анода переходит в раствор в виде ионов серебра, оставляя электроны на аноде.

Анод теряет серебро, и чистое изменение - это просто перенос серебра с анода на катод.

 

Электролиз раствора сульфата меди (II) с использованием медного анода

Аналогичное изменение происходит при электролизе раствора сульфата меди (II) с помощью медных электродов.Медь осаждается на катоде, как и следовало ожидать, но вместо кислорода, выделяемого на аноде, ионы меди (II) переходят в раствор. Опять же, есть чистый перенос меди от анода к катоду.

Используется для очистки меди, и вы можете узнать об этом больше, прочитав часть страницы о меди. Вам не нужна вся страница - только раздел об очищении.

 

Практическая деталь

Конечно, вы можете электролизовать раствор, поместив его в химический стакан с двумя угольными электродами и подключив электроды к источнику постоянного тока, например батарее.

Вы можете, однако, захотеть собрать газы, выделяемые для тестирования, и, возможно, измерить их объем. В заключительной части этой страницы рассматриваются два простых устройства, которые позволят вам это сделать.

Сбор любых газов для проверки

Если у вас есть газы, исходящие от обоих электродов, вам необходимо держать их отдельно, а также собирать их. Это простой и дешевый способ сделать это.

Изначально обе маленькие пробирки заполнены любым раствором, который вы можете подвергать электролизу.Газы, выходящие из двух электродов, не смешиваются, и, если есть два газа, оба могут быть испытаны отдельно.

Помимо газов, отчетливо видны любые осажденные на катоде металлы, а также любые растворы брома или йода, образующиеся на аноде. Раствор брома от бледного до средне-оранжевого цвета; Цвет раствора йода варьируется в зависимости от концентрации йода от оранжевого до темно-красного.


Примечание: Йод можно получить только при электролизе раствора йодида.Выделяющийся йод фактически реагирует с непрореагировавшими ионами йодида с образованием растворимого иона I 3 - . Это вызывает появление красного цвета.


Сбор любых газов для их измерения

Самый простой способ - использовать U-образную трубку с боковым рычагом. Вы можете собирать и измерять объем выделяемых газов, собирая их над водой в перевернутые мерные цилиндры или в газовые шприцы.

Амперметр включен в схему, потому что, если вы измеряете выделяемые объемы, вы почти наверняка захотите узнать, какой ток протекает, чтобы выполнять какие-либо вычисления. Расчеты описаны на других страницах этого раздела.

 
 

Куда бы вы сейчас хотели отправиться?

В меню «Электролиз». , ,

В меню «Неорганическая химия»., ,

В главное меню. , ,

 

© Джим Кларк, 2017

.

Электролиз гидроксида калия, Электролиз гидроксида калия Поставщики и производители на Alibaba.com

Домой Окружающая среда электролиз

Электролиз гидроксида калия

126 найденные продукты для

,

% PDF-1.4 % 220 0 объект > endobj Xref 220 37 0000000016 00000 н. 0000001430 00000 н. 0000001586 00000 н. 0000002072 00000 н. 0000002406 00000 н. 0000003147 00000 н. 0000003216 00000 н. 0000004620 00000 н. 0000006094 00000 н. 0000007452 00000 н. 0000008887 00000 н. 0000010702 00000 п. 0000012411 00000 п. 0000014272 00000 п. 0000015712 00000 п. 0000015956 00000 п. 0000016039 00000 п. 0000016094 00000 п. 0000016209 00000 п. 0000016323 00000 п. 0000017880 00000 п. 0000018203 00000 п. 0000018593 00000 п. 0000018677 00000 п. 0000023604 00000 п. 0000024145 00000 п. 0000024783 00000 п. 0000034863 00000 п. 0000034902 00000 п. 0000041501 00000 п. 0000041540 00000 п. 0000041623 00000 п. 0000041712 00000 п. 0000041799 00000 п. 0000041935 00000 п. 0000001250 00000 н. 0000001036 00000 н. прицеп ] / Назад 48449 / XRefStm 1250 >> startxref 0 %% EOF 256 0 объект > поток hb`Pd`a

.

Смотрите также