Фосфата калия электролиз раствора


Электролиз | CHEMEGE.RU

  Химические реакции, сопровождающиеся переносом электронов (окислительно-восстановительные реакции) делятся на два типа: реакции, протекающие самопроизвольно и реакции, протекающие при прохождении тока через раствор или расплав электролита.

  Раствор или расплав электролита помещают в специальную емкость — электролитическую ванну.

  Электрический ток — это упорядоченное движение заряженных частиц — ионов, электронов и др. под действием внешнего электрического поля. Электрическое поле в растворе или расплаве электролита создают электроды.

  Электроды — это, как правило, стержни из материала, проводящего электрический ток. Их помещают в раствор или расплав электролита, и подключают к электрической цепи с источником питания.

  При этом отрицательно заряженный электрод катод — притягивает положительно заряженные ионы — катионы. Положительно заряженный электрод (анод) притягивает отрицательно заряженные частицы (анионы). Катод выступает в качестве восстановителя, а анод — в качестве окислителя.

 Различают электролиз с активными и инертными электродами. Активные (растворимые) электроды подвергаются химическим превращениям в процессе электролиза. Обычно их изготавливают из меди, никеля и других металлов. Инертные (нерастворимые) электроды химическим превращениям не подвергаются. Их изготавливают из неактивных металлов, например, платины, или графита.

Электролиз растворов

   Различают электролиз раствора или расплава химического вещества. В растворе присутствует дополнительное химическое вещество — вода, которая может принимать участие в окислительно-восстановительных реакциях.

Катодные процессы

  В растворе солей катод притягивает катионы металлов. Катионы металлов могут выступать в качестве окислителей. Окислительные способности ионов металлов различаются. Для оценки окислительно-восстановительных способностей металлов применяют электро-химический ряд напряжений:

     Каждый металл характеризуется значением электрохимического потен-циала. Чем меньше потенциал, тем больше восстановительные свойства металла и тем меньше окислительные свойства соответствующего иона этого металла. Разным ионам соответствуют разные значения этого потенциала. Электрохимический потенциал — относительная величина. Электрохимический потенциал водорода принят равным нулю.

   Также около катода находятся молекулы воды Н2О. В составе воды есть окислитель — ион H+

При электролизе растворов солей на катоде наблюдаются следующие закономерности:

1. Если металл в соли — активный (до Al3+ включительно в ряду напряжений), то вместо металла на катоде восстанавливается (разряжается) водород, т.к. потенциал водорода намного больше. Протекает процесс восстановления молекулярного водорода из воды, при этом образуются ионы OH, среда возле катода — щелочная:

2H2O +2ē → H2 + 2OH

Например, при электролизе раствора хлорида натрия на катоде будет вос-станавливаться только водород из воды.

2. Если металл в соли –  средней активности (между Al3+ и Н+), то на катоде восстанавливается (разряжается) и металл, и водород, так как потенциал таких металлов сравним с потенциалом водорода:

Men+ + nē → Me0

2H+2O +2ē → H20 + 2OH

Например, при электролизе раствора сульфата железа (II) на катоде будет восстанавливаться (разряжаться) и железо, и водород:

Fe2+ + 2ē → Fe0

2H+2O +2ē → H20 + 2OH

3. Если металл в соли — неактивный (после водорода в ряду стандартных электрохимических металлов), то ион такого металла является более сильным окислителем, чем ион водорода, и на катоде восстанавливается только металл:

Men+ + nē → Me0

Например, при электролизе раствора сульфата меди (II) на катоде будет восстанавливаться медь:

Cu2+ + 2ē → Cu0

4. Если на катод попадают катионы водорода H+, то они и восстанавливаются до молекулярного водорода:

2H+ + 2ē → H20

Анодные процессы

Положительно заряженный анод притягивает анионы и молекулы воды. Анод – окислитель. В качестве восстановителей выступаю либо анионы кислотных остаток, либо молекулы воды (за счет кислорода в степени окисления -2: H2O-2).

При электролизе растворов солей на аноде наблюдаются следующие закономерности:

1. Если на анод попадает бескислородный кислотный остаток, то он окисляется до свободного состояния (до степени окисления  0):

неМеn- – nē = неМе0

Например: при электролизе раствора хлорида натрия на аноде окисляют-ся хлорид-ионы:

2Cl – 2ē = Cl20

Действительно, если вспомнить Периодический закон: при увеличении электроотрицательности неметалла его восстановительные свойства уменьшаются. А кислород – второй по величине электроотрицательности элемент. Таким образом, проще окислить практически любой неметалл, а не кислород. Правда, есть одно исключение. Наверное, вы уже догадались. Конечно же, это фтор. Ведь электроотрицательность фтора больше, чем у кислорода. Таким образом, при электролизе растворов фторидов окисляться будут именно молекулы воды, а не фторид-ионы:

2H2O-2 – 4ē → O20+ 4H+

2. Если на анод попадает кислородсодержащий кислотный остаток, либо фторид-ион, то окислению подвергается вода с выделением молекулярно-го кислорода:

2H2O-2 – 4ē → O20 + 4H+

3. Если на анод попадает гидроксид-ион, то он окисляется и происходит выделение молекулярного кислорода:

 4O-2H – 4ē → O20 + 2H2O

4. При электролизе растворов солей карбоновых кислот окислению под-вергается атом углерода карбоксильной группы, выделяется углекислый газ и соответствующий алкан. 

Например, при электролизе растворов ацетатов выделяется углекислый газ и этан:

2CH3C+3OO 2ē → 2C+4O2+ CH3-CH3

Суммарные процессы электролиза

Рассмотрим электролиз растворов различных солей.

Например, электролиз раствора сульфата меди. На катоде восстанавливаются ионы меди:

Катод (–): Cu2+ + 2ē → Cu0

На аноде окисляются молекулы воды:

Анод (+): 2H2O-2 – 4ē → O2 + 4H+

Сульфат-ионы в процессе не участвуют. Мы их запишем в итоговом уравнении с ионами водорода в виде серной кислоты:

2Cu2+SO4 + 2H2O-2 → 2Cu0 + 2H2SO4 + O20

Электролиз раствора хлорида натрия выглядит так:

На катоде восстанавливается водород:

Катод (–): 2H+2O +2ē → H20 + 2OH

На аноде окисляются хлорид-ионы:

Анод (+): 2Cl – 2ē → Cl20

Ионы натрия в процессе электролиза не участвуют. Мы записываем их с гидроксид-анионами в суммарном уравнении электролиза раствора хлорида натрия:

2H+2O +2NaCl → H20 + 2NaOH + Cl20

Следующий пример: электролиз водного раствора карбоната калия.

На катоде восстанавливается водород из воды:

Катод (–): 2H+2O +2ē → H20 + 2OH

На аноде окисляются молекулы воды до молекулярного кислорода:

Анод (+): 2H2O-2 – 4ē → O20 + 4H+

Таким образом, при электролизе раствора карбоната калия ионы калия и карбонат-ионы в процессе не участвуют. Происходит электролиз воды:

2H2+O-2 →  2H20 + O20 

Еще один пример: электролиз водного раствора хлорида меди (II).

На катоде восстанавливается медь:

Катод (–): Cu2+ + 2ē → Cu0

На аноде окисляются хлорид-ионы до молекулярного хлора:

Анод (+): 2Cl – 2ē → Cl20

Таким образом, при электролизе раствора карбоната калия происходит электролиз воды:

Cu2+Cl2– → Cu0 + Cl20

Еще несколько примеров: электролиз раствора гидроксида натрия.

На катоде восстанавливается водород из воды:

Катод (–): 2H+2O +2ē → H20 + 2OH

На аноде окисляются гидроксид-ионы до молекулярного кислорода:

Анод (+): 4O-2H – 4ē → O20 + 2H2O

Таким образом, при электролизе раствора гидроксида натрия происходит разложение воды, катионы натрия в процессе не участвуют:

2H2+O-2 →  2H20 + O20 

Электролиз расплавов

  При электролизе расплава на аноде окисляются анионы кислотных остатков, а на катоде восстанавливаются катионы металлов. Молекул воды в системе нет.

Например: электролиз расплава хлорида натрия. На катоде восстанавли-ваются катионы натрия:

Катод (–): Na+ + ē → Na0

На аноде окисляются анионы хлора:

Анод (+): 2Cl – 2ē → Cl20

Суммарное уравнение электролиза расплава хлорида натрия:

2Na+Cl →  2Na0 + Cl20 

Еще один пример: электролиз расплава гидроксида натрияНа катоде восстанавливаются катионы натрия:

Катод (–): Na+ + ē → Na0

На аноде окисляются гидроксид-ионы:

Анод (+): 4OH – 4ē → O20 + 2H2O

Суммарное уравнение электролиза расплава гидроксида натрия:

4Na+OH →  4Na0 + O20+ 2H2

Многие металлы получают в промышленности электролизом расплавов.

Например, алюминий получают электролизом раствора оксида алюминия в расплаве криолита. Криолит – Na3[AlF6] плавится при более низкой температуре (1100оС), чем оксид алюминия (2050оС). А оксид алюминия отлично растворяется в расплавленном криолите.

В растворе криолите оксид алюминия диссоциирует на ионы:

Al2O3 = Al3+ + AlO33-

На катоде восстанавливаются катионы алюминия:

Катод (–): Al3+ + 3ē → Al0

На аноде окисляются алюминат-ионы:

Анод (+): 4AlO33 – 12ē → 2Al2O3 + 3O20 

 Общее уравнение электролиза раствора оксида алюминия в расплаве криолита:

2Al2О3 = 4Al0 + 3О20

В промышленности при электролизе оксида алюминия в качестве электродов используют графитовые стержни. При этом электроды частично окисляются (сгорают) в выделяющемся кислороде:

C0 + О20 = C+4O2-2 

Электролиз с растворимыми электродами

Если материал электродов выполнен из того же металла, который присут-ствует в растворе в виде соли, или из более активного металла, то на аноде разряжаются не молекулы воды или анионы, а окисляются частицы самого металла в составе электрода.

Например, рассмотрим электролиз раствора сульфата меди (II) с медными электродами.

На катоде разряжаются ионы меди из раствора:

Катод (–): Cu2+ + 2ē → Cu0

На аноде окисляются частицы меди из электрода:

Анод (+): Cu0 – 2ē → Cu2+

 

Электролиз растворов

ЭЛЕКТРОЛИЗ РЕШЕНИЙ

 

На этой странице рассматривается электролиз водных растворов соединений. Большинство людей довольно часто встречают это на курсах химии для 14-16-летних.

 

Основные идеи

Роль воды в электролизе водных растворов электролитов

Ситуация более сложная, когда вы электролизуете раствор, а не расплав, из-за присутствия воды.

Вода сама по себе является очень слабым электролитом, потому что она в очень незначительной степени расщепляется на ионы водорода и ионы гидроксида.


Примечание: Я, конечно, упрощаю это. Вы должны знать, что ион водорода не существует сам по себе в этих обстоятельствах - он фактически присоединяется к другой молекуле воды, давая ион гидроксония, H 3 O + . Это означает символ состояния (aq).


Это означает, что на каждый электрод может приходить более одного иона, и можно выбрать, какой из них будет разряжаться.

Например, если вы электролизовали раствор хлорида натрия, ионы натрия и ионы водорода (из воды) притягиваются к катоду, а ионы хлорида и ионы гидроксида (из воды) притягиваются к аноду.

 

Электрохимическая серия

В таблице ниже перечислены несколько металлов (и водород), показывающих их склонность к потере электронов. Чем более отрицательным является значение E ° (обычно читаемое как «E-ноль»), тем левее находится положение равновесия.

Это означает, что чем больше отрицательное значение E °, тем больше у одного из этих элементов склонности к потере электронов и образованию своих ионов.

Это также означает, что что-то вроде лития будет иметь небольшую тенденцию собирать электроны для образования атомов после ионизации.

Напротив, что-то с положительным значением E ° будет неохотно терять электроны для образования ионов, но будет довольно легко заставить один из его ионов улавливать электроны, чтобы снова стать нейтральным элементом.

Итак, золото не будет очень реактивным, потому что у него очень положительное значение E °. Нелегко удалить электроны, чтобы получить ионы золота, но ионы золота снова легко превратить в металлическое золото.

Электрохимический ряд можно рассматривать как расширенный и слегка модифицированный ряд реактивности.

Все, что вам действительно нужно знать об электролизе:

  • Чем выше в электрохимическом ряду находится что-то в правой части равновесия, тем легче оно теряет электроны.

  • Чем ниже в электрохимическом ряду находится что-то в левой части равновесия, тем легче оно будет улавливать электроны.


Примечание: Для целей электролиза вам не нужно понимать, откуда берутся эти числа или к чему именно относятся равновесия.

Если вы хотите узнать больше об электрохимических рядах, включая происхождение этих чисел, вы найдете их, перейдя по этой ссылке.Это вторая страница в серии страниц, посвященных окислительно-восстановительным потенциалам, и вам, вероятно, также потребуется прочитать первую страницу. Это не обязательно для просмотра остальной части текущей страницы.



Подведение итогов

Я хочу подвести итог этому, прежде чем подробно рассматривать конкретные примеры. Важно, чтобы вы запомнили шаблоны, приведенные в следующем фрагменте.

Что происходит на катоде?

Положительные ионы притягиваются к катоду, где они захватывают один или несколько электронов и разряжаются.

Либо металл осаждается, либо водород образуется из воды. Что вы получите, зависит от положения металла в электрохимическом ряду и, в некоторых случаях, от концентрации раствора.

  • Если металл ниже водорода в электрохимическом ряду (если он имеет положительное значение E °), то вы получите металл. К таким металлам относятся медь и серебро.

  • Если металл занимает высокое место в электрохимическом ряду (если он имеет довольно отрицательное значение E °), то вы получаете водород.К таким металлам относятся магний и натрий.

  • Металлы от, скажем, свинца до цинка в электрохимическом ряду более сложные. Что получится, зависит от концентрации раствора. Если раствор достаточно концентрированный, вы получите осаждение металла. Если раствор очень разбавлен на , вы получите водород. При промежуточных концентрациях вы можете получить и то, и другое.

Чем выше элемент в электрохимическом ряду, тем легче он теряет электроны и тем труднее забирает их обратно.Гораздо легче убедить медь взять обратно электроны, чтобы превратить ион в атом, чем, скажем, сделать то же самое с литием.

Что происходит на аноде?

Использование инертных электродов, таких как платиновый или угольный

Как правило, если у вас есть галоген, вы получите галоген. Со всеми другими распространенными анионами (отрицательными ионами) вы будете получать кислород из воды.

Но концентрация здесь играет роль.Например, если у вас есть концентрированный раствор хлорида натрия, на аноде будет в основном хлор. Чем больше и больше разбавленных растворов, тем меньше хлора и больше кислорода. Очень и очень разбавленные растворы будут давать в основном кислород.

Если анод не инертен

Сложность возникает, если анод не инертен, и мы рассмотрим пару примеров этого далее на странице.

 

Некоторые примеры

Электролиз раствора сульфата меди (II) угольными электродами

Медь находится ниже уровня водорода в электрохимическом ряду, поэтому, используя приведенное выше резюме, можно предсказать, что медь будет выделяться на катоде.

Продолжая использовать приведенное выше резюме, вы можете предсказать, что кислород будет выделяться на аноде, потому что в нем нет галогена.

Именно это и происходит.

На катоде

Ионы меди (II) и ионы водорода притягиваются к отрицательному катоду. Медь находится ниже водорода в электрохимическом ряду, поэтому именно медь принимает электроны от катода.

Катод покрывается медью.

На аноде

Ионы сульфата и ионы гидроксида притягиваются к положительному катоду, но очень трудно убедить ионы сульфата отдать электроны.

Теперь все усложняется, потому что есть два способа описания анодной реакции в подобных случаях. Самый простой способ - представить это в терминах гидроксид-ионов.

Предполагая, что гидроксид-ионы разряжены

Кислород выделяется.

Проблема в том, что в растворе сульфата меди (II) будет очень мало гидроксид-ионов. Вы можете обойти это, заметив, что реакция воды, в результате которой образуются ионы водорода и гидроксида, является равновесной. Когда вы разряжаете ионы гидроксида, равновесие смещается, чтобы заменить их.

Получение кислорода непосредственно из молекул воды

Общий эффект точно такой же, как если бы вы выпустили ионы гидроксида, и водное равновесие сместилось, чтобы заменить их.Сдвиг равновесия также будет производить ионы водорода. Они, конечно, будут отталкиваться от анода.

Так что же правильно?

Это почти наверняка зависит от pH раствора. В данном конкретном случае раствор сульфата меди (II) является умеренно кислым, что означает, что гидроксид-ионов даже меньше, чем в чистой воде, поэтому второе уравнение (вода), вероятно, будет более точным.


Примечание: Что вы делаете с этим для экзамена? Вам нужно выяснить, какую версию этих уравнений используют ваши экзаменаторы, и затем придерживаться ее - не беспокойтесь об изменении ее от примера к примеру.Вам необходимо проверить, какие из них они использовали в своих прошлых работах и ​​какая форма их предпочтительнее в их схемах оценок. Вполне вероятно, что они тоже согласятся, но вы должны быть уверены.


Подобные футляры

Любой раствор, содержащий сульфат-ионы (в том числе разбавленную серную кислоту), будет вести себя точно так же на инертном аноде - будет выделяться кислород.

Ионы нитрата также производят кислород. Вывести гидроксид-ионы из воды (или самой воды, если вы используете это уравнение) легче, чем из нитрат-иона.

 

Электролиз раствора хлорида натрия угольными электродами

Натрий значительно превосходит водород в электрохимическом ряду, поэтому, используя приведенное выше резюме, можно предсказать, что водород будет выделяться на катоде.

Продолжая использовать приведенное выше резюме, можно предположить, что хлор (галоген) будет выделяться на аноде.

Оказывается, этот случай немного сложнее, потому что результат на аноде зависит от концентрации раствора.

На катоде

Прибывают ионы натрия и ионы водорода (из воды), но натрий настолько высок в электрохимическом ряду, что его ионы не разряжаются там, где есть выбор.

Если вы электролизуете расплавленный хлорид натрия, то выбора нет - нужно разряжать ионы натрия. Но в решении у вас есть альтернатива. К сожалению, есть два разных взгляда на это, как и на проблему с анодом, описанную выше.

Предполагая, что ионы водорода разряжаются

Выделяется водород.

Вы можете преодолеть тот факт, что в растворе не очень много ионов водорода, если вспомнить, что когда вода ионизируется с образованием ионов водорода и гидроксид-ионов, это равновесие. По мере того, как ионы водорода разряжаются, больше воды расщепляется, чтобы заменить их.

Получение водорода непосредственно из молекул воды

Как и в случае с аналогичным анодным случаем выше, как бы вы ни смотрели на него, общий эффект будет таким же.Вы получаете газообразный водород и образование ионов гидроксида - вместе с ионами водорода, когда водное равновесие смещается, чтобы заменить высвобождаемые ионы водорода.

Итак, какое уравнение вам следует использовать?

Вы должны руководствоваться тем уравнением, которое используют ваши экзаменаторы в своих вопросах или в схемах выставления оценок. На практике они, скорее всего, примут и то, и другое.

Подобные футляры

Когда вы электролизуете соединение металла над водородом в электрохимическом ряду и получаете водород, применяется тот же аргумент.Однако есть некоторые случаи, когда водород не выделяется при таких обстоятельствах, и мы рассмотрим их далее на странице.

На аноде

Ионы хлора и ионы гидроксида притягиваются к положительному аноду. На самом деле, ионы гидроксида немного легче разряжать, но в основном вы получаете хлор.

  • Если раствор хлорида натрия достаточно концентрирован, вы получите в основном хлор.

  • Если раствор хлорида натрия очень разбавлен , вы получите в основном кислород.

  • При промежуточных концентрациях вы получите смесь обоих.


Примечание: На этом уровне это то, что вам в основном просто необходимо принять. Нет никакого простого объяснения , которое я мог бы добавить, не делая эту длинную и часто сложную страницу еще хуже. Я думаю, очень маловероятно, что вам когда-либо придется объяснять причину этого на экзамене по химии на этом уровне.

Если вы столкнетесь с вопросами от экзаменаторов, которые, по-видимому, нуждаются в надлежащих объяснениях, не могли бы вы сообщить мне об этом по адресу, указанному на странице об этом сайте.Было бы полезно, если бы вы также могли точно сказать мне, что ваши экзаменаторы ожидают от вас.



Образование хлора определяется уравнением:

А образование кислорода задается одним из уравнений:

или:

Водные растворы бромидов и иодидов

В обоих случаях можно предположить, что на аноде образуется бром или йод.Уравнения аналогичны разряду ионов хлора, описанному выше.

 

Электролиз раствора хлорида натрия с использованием ртутного катода

Это хороший пример случая, когда природа электрода имеет огромное значение.

Когда-то это был основной промышленный метод производства раствора гидроксида натрия, а также хлора и водорода, но он был в значительной степени заменен более экологически чистыми методами. В прошлом были серьезные примеры опасного загрязнения из-за утечки ртути в окружающую среду.

На катоде

Когда ионы натрия и ионы водорода попадают на ртутный катод, именно ионы натрия выделяются в виде металлического натрия. Он растворяется в ртути с образованием раствора, известного как «натриевая амальгама».

Амальгама натрия вытекает из электролизера и вступает в реакцию с водой, освобождая ртуть для рециркуляции через электролизер и производя раствор гидроксида натрия и водород.

На аноде

Хлор производится, как и следовало ожидать.

 

Электролиз раствора сульфата цинка угольными электродами

Я использую соединение цинка в качестве примера довольно неожиданных результатов, которые вы получаете при электролизе растворов соединений металлов от свинца до цинка в электрохимической серии.

Все они выше водорода в электрохимическом ряду, и поэтому можно ожидать, что водород будет выделяться на катоде вместо металла. Это не то, что происходит при любой разумной концентрации растворов солей этих металлов.

На катоде

Ионы цинка захватывают электроны с катода, образуя атомы цинка, которые прикрепляются к катоду.

На аноде

Это еще один случай электролиза сульфата, и мы подробно рассмотрели его далее на странице, рассказывая об электролизе раствора сульфата меди (II).


Примечание: Опять же, не существует быстрого и простого способа объяснить, почему разряжаются ионы цинка, а не ионы водорода, и очень маловероятно, что вас попросят объяснить это на экзамене на этом уровне.

Если вы хотите узнать больше, вы можете погуглить перенапряжение . Вы можете встретить такие фразы, как «большое перенапряжение водорода». Использование слова «перенапряжение» на самом деле ничего не объясняет. Все, что он на самом деле говорит, - это то, что водород труднее разрядить, чем можно было бы ожидать, исходя из его положения в электрохимическом ряду - и мы знаем это, потому что экспериментально в том случае, о котором мы говорим, вы получаете цинк, а не водород.

Итак, если вы хотите следить за этим (почти наверняка это не обязательно для экзаменов по химии на этом уровне), поищите объяснения, объясняющие, почему значение E ° водорода не применимо в реальной ситуации электролиза раствора сульфата цинка.



Электролиз раствора нитрата серебра с использованием серебряного анода

Это пример случая, когда вы используете электрод, который химически участвует в реакции.

На катоде

Если вы электролизуете раствор нитрата серебра с использованием серебра в качестве анода, серебро будет осаждаться на любом материале, из которого сделан катод, как и следовало ожидать.

Может использоваться для серебряного покрытия.

На аноде

Но на аноде, вместо того, чтобы что-либо выгружать из раствора, серебро из анода переходит в раствор в виде ионов серебра, оставляя электроны на аноде.

Анод теряет серебро, и чистое изменение - это просто перенос серебра с анода на катод.

 

Электролиз раствора сульфата меди (II) с использованием медного анода

Аналогичное изменение происходит при электролизе раствора сульфата меди (II) с помощью медных электродов.Медь осаждается на катоде, как и следовало ожидать, но вместо кислорода, выделяемого на аноде, ионы меди (II) переходят в раствор. Опять же, есть чистый перенос меди от анода к катоду.

Используется для очистки меди, и вы можете узнать об этом больше, прочитав часть страницы о меди. Вам не нужна вся страница - только раздел об очищении.

 

Практическая деталь

Конечно, вы можете электролизовать раствор, поместив его в химический стакан с двумя угольными электродами и подключив электроды к источнику постоянного тока, например батарее.

Вы можете, однако, захотеть собрать газы, выделяемые для тестирования, и, возможно, измерить их объем. В заключительной части этой страницы рассматриваются два простых устройства, которые позволят вам это сделать.

Сбор любых газов для проверки

Если у вас есть газы, исходящие от обоих электродов, вам необходимо держать их отдельно, а также собирать их. Это простой и дешевый способ сделать это.

Изначально обе маленькие пробирки заполнены любым раствором, который вы можете подвергать электролизу.Газы, выходящие из двух электродов, не смешиваются, и, если есть два газа, оба могут быть испытаны отдельно.

Помимо газов, отчетливо видны любые осажденные на катоде металлы, а также любые растворы брома или йода, образующиеся на аноде. Раствор брома от бледного до средне-оранжевого цвета; Цвет раствора йода варьируется в зависимости от концентрации йода от оранжевого до темно-красного.


Примечание: Йод можно получить только при электролизе раствора йодида.Выделяющийся йод фактически реагирует с непрореагировавшими ионами йодида с образованием растворимого иона I 3 - . Это вызывает появление красного цвета.


Сбор любых газов для их измерения

Самый простой способ - использовать U-образную трубку с боковым рычагом. Вы можете собирать и измерять объем выделяемых газов, собирая их над водой в перевернутые мерные цилиндры или в газовые шприцы.

Амперметр включен в схему, потому что, если вы измеряете выделяемые объемы, вы почти наверняка захотите узнать, какой ток протекает, чтобы выполнять какие-либо вычисления. Расчеты описаны на других страницах этого раздела.

 
 

Куда бы вы сейчас хотели отправиться?

В меню «Электролиз». . .

В меню «Неорганическая химия».. .

В главное меню. . .

 

© Джим Кларк, 2017

.

Использование фосфата калия, побочные эффекты и предупреждения

Общее название: фосфат калия (poe TASS ee um FOSS fate)
Фирменное наименование: Neutra-Phos-K

Медицинская проверка на сайте Drugs.com 21 апреля 2020 г. - Автор Cerner Multum

Что такое фосфат калия?

Фосфор - это встречающееся в природе вещество, которое важно для каждой клетки тела. Фосфор содержится во всех клетках организма и используется для роста и восстановления клеток и тканей.

Фосфат калия используется для лечения или профилактики гипофосфатемии (низкого уровня фосфора в крови). Фосфат калия иногда добавляют в жидкости, вводимые внутривенно людям, которые не могут ничего есть или пить.

Фосфат калия также может использоваться для целей, не указанных в данном руководстве.

Важная информация

Не следует использовать фосфат калия, если у вас низкий уровень кальция или высокий уровень калия или фосфора в организме.

Перед приемом этого лекарства

Не следует использовать фосфат калия, если у вас есть:

Сообщите своему врачу, если у вас когда-либо были:

Сообщите своему врачу, если вы беременны или кормите грудью.

Не давайте фосфат калия детям младше 4 лет без консультации с врачом.

Как вводится фосфат калия?

Фосфат калия вводится в вену в виде инфузии. Врач назначит вам первую дозу и может научить вас самостоятельно принимать лекарство.

Прочтите и внимательно следуйте инструкциям по применению, прилагаемым к вашему лекарству. Если вам не все инструкции понятны, спросите своего врача или фармацевта.

Фосфат калия перед использованием необходимо смешать с жидкостью (разбавителем). При самостоятельном использовании инъекций убедитесь, что вы знаете, как правильно смешивать и хранить лекарство.

Готовьте инъекцию только тогда, когда вы готовы ее сделать. Не используйте, если лекарство изменило цвет или в нем есть частицы. Обратитесь к фармацевту за новым лекарством.

Вам потребуются частые медицинские анализы.

Хранить при комнатной температуре вдали от влаги, тепла и света.

Что произойдет, если я пропущу дозу?

Обратитесь к врачу за инструкциями, если вы пропустите дозу.

Что произойдет, если я передозирую?

Обратитесь за неотложной медицинской помощью или позвоните в справочную службу Poison по телефону 1-800-222-1222.

Чего следует избегать при приеме фосфата калия?

Не принимайте добавки калия или заменители соли, если только ваш врач не сказал вам об этом.

Избегайте приема витаминов или минеральных добавок, содержащих кальций или витамин D, если только ваш врач не скажет вам об этом.

Проконсультируйтесь с врачом перед использованием антацида и используйте только тот тип, который рекомендует врач. Некоторые антациды могут затруднить усвоение фосфата калия в организме.

Побочные эффекты фосфата калия

Получите неотложную медицинскую помощь при признаках аллергической реакции : крапивница; затрудненное дыхание; отек лица, губ, языка или горла.

Немедленно сообщите медицинским работникам, если у вас есть какие-либо признаки электролитного дисбаланса, например:

  • спутанность сознания, сильная слабость;

  • ощущение головокружения, будто вы можете потерять сознание;

  • тошнота, боль в груди, нерегулярное сердцебиение;

  • онемение или покалывание в руках или ногах;

  • слабость или ощущение тяжести в ногах;

  • потеря движения в любой части тела; или

  • медленное сердцебиение, слабый пульс, обморок, медленное дыхание.

Это не полный список побочных эффектов, могут возникать и другие. Спросите у своего доктора о побочных эффектах. Вы можете сообщить о побочных эффектах в FDA по телефону 1-800-FDA-1088.

Информация о дозировке фосфата калия

Обычная доза для взрослых при гипофосфатемии:

Гипофосфатемия: Доза и скорость введения зависят от индивидуальных потребностей пациента

Общее парентеральное питание: рекомендуется от 12 до 15 миллимолярного фосфора на каждые 500 мл инъекции 50% -ной декстрозы
-Помните количество вводимого калия; контролировать уровень калия в сыворотке и / или изменения электрокардиографии по мере необходимости.

Комментарии:
- Перед введением необходимо разбавить.

Обычная педиатрическая доза для гипофосфатемии:

Гипофосфатемия: Доза и скорость введения зависят от индивидуальных потребностей пациента

Младенцы, получающие полное парентеральное питание: 1,5-2 миллимоля фосфора / кг / день
-Помните о количестве настаивается калий; контролировать уровень калия в сыворотке и / или изменения электрокардиографии по мере необходимости.

Комментарии:
- Перед введением необходимо разбавить.

Какие другие препараты будут влиять на фосфат калия?

Расскажите своему врачу обо всех других ваших лекарствах, особенно о:

Этот список не полный.Другие препараты могут влиять на фосфат калия, включая лекарства, отпускаемые по рецепту и без рецепта, витамины и растительные продукты. Здесь перечислены не все возможные лекарственные взаимодействия.

Дополнительная информация

Помните, храните это и все другие лекарства в недоступном для детей месте, никогда не передавайте свои лекарства другим и используйте это лекарство только по назначению.

Всегда консультируйтесь со своим врачом, чтобы убедиться, что информация, отображаемая на этой странице, применима к вашим личным обстоятельствам.

Copyright 1996-2018 Cerner Multum, Inc. Версия: 2.01.

Заявление об ограничении ответственности в отношении медицинских услуг

Подробнее о фосфате калия

Потребительские ресурсы

Профессиональные ресурсы

Сопутствующие лечебные руководства

.

Что такое электролиз концентрированного хлорида калия в водных растворах?

Химия
Наука
  • Анатомия и физиология
  • Астрономия
  • Астрофизика
  • Биология
  • Химия
  • наука о планете Земля
  • Наука об окружающей среде
  • Органическая химия
  • Физика
.

Двухосновный фосфат калия | 7758-11-4

Двухосновные химические свойства фосфата калия, применение, производство

Описание

Фосфат калия (K2HPO4) - распространенный источник фосфора и калия, который часто используется в качестве удобрения. Он также широко применяется в пищевой промышленности, например, в качестве пищевой добавки и пополнителя электролита для тренировок. Еще одно применение дикалия фосфата - это лекарство, которое действует как мочегонное или слабительное средство.Кроме того, он используется в производстве имитаций молочных сливок для предотвращения коагуляции и используется в некоторых порошках для приготовления напитков. Кроме того, его обычно используют в химических лабораториях для получения буферных растворов и соевого агара с триптиказой, который используется для изготовления чашек с агаром для культивирования бактерий.

Химические свойства

Белый кристаллический порошок

Физические свойства

Белый аморфный порошок; расплывание; разлагается при нагревании; при воспламенении превращается в пирофосфат; хорошо растворяется в воде, 167 г / 100 мл при 20 ° C; хорошо растворяется в спирте; водный раствор слабощелочной.

использует

Буферные растворы.

использует

Буферный агент в растворах антифризов; питательное вещество при культивировании антибиотиков; ингредиент растворимых удобрений; как секвестрант при приготовлении кофейных кремов из немолочного порошка.

использует

дикалия фосфат используется в качестве буферного агента для контроля степени кислотности в растворах.

использует

Дикалий фосфат - это дикалиевая соль фосфорной кислоты, которая действует как стабилизирующая соль, буфер и секвестрант.Он слабощелочной с pH 9 и растворим в воде с растворимостью 170 г / 100 мл воды при 25 ° C. Улучшает коллоидную растворимость белков. Он действует как буфер против изменения ph. Например, он используется в отбеливателях для кофе в качестве буфера против изменения pH в горячем кофе и для предотвращения расплывания. Он также действует как эмульгатор в определенных сырах и как буферный агент для обработанных пищевых продуктов. Его также называют моногидрофосфатом калия, двухосновным фосфатом калия и монофосфатом калия.

Определение

ChEBI: калиевая соль, дикалиевая соль фосфорной кислоты.

Препарат

Фосфат калия получают частичной нейтрализацией фосфорной кислоты гидроксидом калия с последующей кристаллизацией:
H 3 PO 4 + 2KOH → K2HPO 4 + 2H 2 O.

Список литературы

https://en.wikipedia.org/wiki/Dipotassium_phosphate
https: // pubchem.ncbi.nlm.nih.gov/compound/Dipotassium_hydrogen_phosphate#section=Other-Identifiers
https://www.isitbadforyou.com/questions/is-dipotassium-phosphate-bad-for-you

Продукты и сырье для подготовки двухосновного фосфата калия

Сырье

Препараты

.

Смотрите также