Характеристика химического элемента по положению в псхэ калий


Характеристика калия

Характеристика калия

Калий (K) располагается в 4 периоде, в I группе, главной подгруппе, имеет порядковый номер 19.

Массовое число: A = 39
Число протонов: P = 19
Число электронов: ē = 19
Число нейтронов: N = A - Z = 39 - 19 = 20

19K 1s2 2s2 2p6 3s2 3p6 4s1

Валентные электроны

Калий – s-элемент, металл.

Степени окисления
минимальная: 0
максимальная: +1

Высший оксид: K2O – оксид калия.
Проявляет основные свойства:
K2O + 2HCl ⟶ 2KCl + H2O

Высший гидроксид: KOH – гидроксид калия.
Проявляет основные свойства:
2KOH + 2HCl ⟶ 2KCl + 2H2O

Кальций - Информация об элементе, свойства и использование

Расшифровка:

Химия в ее элементе: кальций

(Promo)

Вы слушаете Химию в ее элементе, представленную вам журналом Chemistry World , журналом Королевского химического общества.

(Конец промо)

Крис Смит

Привет, добро пожаловать на эту неделю на «Химия в ее элементе», я Крис Смит.На этой неделе настала очередь стихии, дающей нам цемент, гипс Парижа, наши собственные кости, твердые зубы и жесткую воду.

Карен Фолдс

Молоко, сыр, йогурт, шпинат, миндаль. Что у всех них общего? Конечно, это кальций! Но в то время как большинство из нас сразу же думает о еде, когда кто-то упоминает кальций (и я лично считаю, что за это отвечает старая реклама молока), на самом деле он играет гораздо большую роль в нашей жизни, чем это. Кальций повсюду вокруг нас.В среднем человек содержит примерно 1 кг кальция, 99% которого хранится в наших костях. Это 5-й по численности элемент в земной коре, широко встречающийся в виде карбоната кальция, более известного как известняк. Это также пятый по распространенности растворенный ион в морской воде.

Кальций был назван в честь латинского термина calx, означающего известь, и представляет собой химически активный серебристый металлический элемент, входящий в группу 2 периодической таблицы. Впервые он был выделен в 1808 году в Англии, когда сэр Хамфри Дэви электролизовал смесь извести и оксида ртути.Сегодня мы получаем кальций путем электролиза расплавленной соли, такой как хлорид кальция. После контакта с воздухом элементарный кальций быстро образует серо-белое оксидно-нитридное покрытие. В отличие от магния, кальций довольно трудно воспламенить, но, однажды зажженный, он горит ярким красным пламенем высокой интенсивности.

Однако соединения кальция гораздо более полезны, чем сам элемент. Литература, относящаяся к 975 году нашей эры, показывает, что парижский гипс (который представляет собой сульфат кальция) уже тогда использовался для закрепления сломанных костей.Оксид кальция (также известный как известь или негашеная известь) является основным компонентом строительного раствора и цемента. Производство цемента с использованием оксида кальция известно давно; его использовали римляне, а также египтяне, построившие Великую пирамиду в Гизе и гробницу Тутанхамона. Фторид кальция также хорошо известен своей нерастворимостью и прозрачностью в широком диапазоне длин волн, что делает его полезным для изготовления ячеек и окон для инфракрасных и ультрафиолетовых спектрометров.

Наша питьевая вода также содержит ионы кальция, особенно в районах с жесткой водой.Жесткая вода - это термин, используемый для воды с высоким содержанием ионов кальция и магния (2+). Кальций обычно попадает в воду, когда проходит мимо карбоната кальция из известняка и мела или сульфата кальция из других минеральных отложений. Хотя некоторым людям не нравится вкус, жесткая вода, как правило, не вредит вашему здоровью. Хотя это делает ваш чайник пушистым! Интересно, что вкус пива (что-то дорогое моему сердцу) кажется связанным с концентрацией кальция в используемой воде, и утверждается, что хорошее пиво должно иметь концентрацию кальция выше, чем в жесткой водопроводной воде.

Кальций - это то, что известно как важный элемент, то есть это элемент, который абсолютно необходим для жизненных процессов. В конце концов, это то, что нам пытались сказать старые рекламные ролики по молочному ТВ. Кальций используется для производства минералов, содержащихся в костях, раковинах и зубах, в процессе, называемом биоминерализацией. Фосфат кальция (также известный как гидроксиапатит) является минеральным компонентом костей и зубов и является особенно хорошим примером того, как организмы производят «живые» композитные материалы.В самом деле, различные свойства (например, жесткость) костей обусловлены изменением количества органического компонента, в основном волокнистого белка, называемого коллагеном, с которым связан гидроксиапатит. Кость в нашем теле функционирует не только как структурная опора, но и как центральный запас кальция. Таким образом, во время беременности кости, как правило, подвергаются поиску кальция в процессе, называемом деминерализация. Кость не вечна; Серьезной медицинской проблемой является остеопороз - декальцификация костей.Эта потеря костной массы, которая происходит с возрастом, делает кости более восприимчивыми к разрушению при стрессе, и это происходит в основном у пожилых людей, особенно у женщин.

Ионы кальция также играют решающую роль в высших организмах в качестве внутриклеточного посредника. Потоки Ca2 + запускают ферментативное действие в клетках в ответ на получение гормонального или электрического сигнала из других частей организма. Кальций также очень важен для свертывания крови. Когда кровотечение из раны внезапно возникает, тромбоциты собираются в ране и пытаются блокировать кровоток.Кальций, витамин К и белок, называемый фибриногеном, помогают тромбоцитам образовывать сгусток. Если в вашей крови не хватает кальция или одного из этих питательных веществ, для свертывания крови потребуется больше времени, чем обычно.

Способность обнаруживать очень малые количества элемента может быть очень полезной адаптацией для животного, если этот элемент для него важен. Например, раки-отшельники, которые населяют бывшие в употреблении раковины и по мере роста меняют раковины на более новые, более крупные, обладают способностью распознавать раковины, пригодные для занятия, не только по ощупыванию, но, по-видимому, также по измерению мельчайшего количества карбоната кальция, которое растворяется в воде вокруг скорлупы.Они могут легко отличить природные раковины, содержащие карбонат кальция, от содержащих кальций аналогов, сделанных из сульфата кальция. Концентрация кальция, обнаруженная крабом-отшельником, составляет порядка 4 частей на миллион или меньше, что является удивительно низким показателем.

Итак, от крепких зубов и костей до пива с хорошим вкусом и обеспечения того, чтобы крабы-отшельники нашли свой идеальный дом - вы можете видеть, что кальций действительно является важным элементом.

Крис Смит

Что ж, я чувствую себя как дома со своей жесткой водой, да и местное пиво тоже имеет неплохой вкус, хотя я пережил немало чайников - действительно, Рассел Хоббс, вероятно, обязан своей высокой цене акций просто ко мне.Что же, может быть. Это была Карен Фолдс из Стратклайдского университета с историей о кальции. На следующей неделе, если бы вы были элементом, кем бы вы были?

Пэт Бейли

Если бы мне пришлось выбрать человека, который бы представлял золото, я бы предположил, что это мог бы быть амбициозный молодой биржевой маклер, немного кричащий и не очень хорош в установлении отношений. Для гелия - воздушно-сказочная блондинка с немного скрипучим голосом, но с стремлением влиться в аристократию. А для бора? Ну, на первый взгляд, скучный бухгалтер средних лет, может быть, в коричневых вельветовых брюках и твидовом пиджаке.но с неожиданной стороной для него в свободное время - прыжками с парашютом и членом весьма сомнительного общества, которое занимается обменом партнерами.

Крис Смит

А инсайдерскую историю о выходках Бора на качелях с Пэтом Бейли вы можете узнать в выпуске Chemistry in its Element на следующей неделе. Я Крис Смит, спасибо за внимание и до свидания.

(промо)

(конец промо)

,

Как элементы сгруппированы в Периодической таблице?

В конце 19 века русский химик Дмитрий Менделеев опубликовал свою первую попытку сгруппировать химические элементы по их атомному весу. В то время было известно только около 60 элементов, но Менделеев понял, что, когда элементы были организованы по весу, определенные типы элементов возникали через равные промежутки времени или периоды.

Сегодня, 150 лет спустя, химики официально признают 118 элементов (после добавления четырех новичков в 2016 году) и до сих пор используют периодическую таблицу элементов Менделеева для их организации.Таблица начинается с простейшего атома, водорода, а затем упорядочиваются остальные элементы по атомному номеру, который представляет собой количество протонов, содержащихся в каждом. За некоторыми исключениями порядок элементов соответствует увеличению массы каждого атома.

В таблице семь строк и 18 столбцов. Каждая строка представляет один период; номер периода элемента показывает, сколько из его энергетических уровней содержат электроны. Натрий, например, находится в третьем периоде, что означает, что атом натрия обычно имеет электроны на первых трех энергетических уровнях.Двигаясь вниз по таблице, периоды становятся длиннее, потому что для заполнения более крупных и сложных внешних уровней требуется больше электронов.

Столбцы таблицы представляют группы или семейства элементов. Элементы в группе часто выглядят и ведут себя одинаково, потому что у них одинаковое количество электронов во внешней оболочке - лице, которое они показывают миру. Например, элементы группы 18 в крайней правой части таблицы имеют полностью сплошные внешние оболочки и редко участвуют в химических реакциях.

Элементы обычно классифицируются как металлические или неметаллические, но разделительная линия между ними нечеткая. Металлические элементы обычно хорошо проводят электричество и тепло. Подгруппы металлов основаны на схожих характеристиках и химических свойствах этих коллекций. Согласно данным Лос-Аламосской национальной лаборатории, наше описание периодической таблицы использует общепринятые группы элементов.

Щелочные металлы: Щелочные металлы составляют большую часть Группы 1, первого столбца таблицы.Эти блестящие и достаточно мягкие, чтобы разрезать ножом, эти металлы начинаются с лития (Li) и заканчиваются францием (Fr). Они также чрезвычайно реактивны и воспламеняются или даже взрываются при контакте с водой, поэтому химики хранят их в маслах или инертных газах. Водород с одним электроном также находится в группе 1, но газ считается неметаллом.

Щелочноземельные металлы: Щелочноземельные металлы составляют 2-ю группу периодической таблицы, от бериллия (Be) до радия (Ra).Каждый из этих элементов имеет два электрона на внешнем энергетическом уровне, что делает щелочноземельные земли достаточно реактивными, поэтому их редко можно найти в природе в одиночку. Но они не так реактивны, как щелочные металлы. Их химические реакции обычно протекают медленнее и выделяют меньше тепла по сравнению с щелочными металлами.

Lanthanides: Третья группа слишком длинна, чтобы поместиться в третьем столбце, поэтому она вырывается и переворачивается боком, чтобы стать верхней строкой острова, плавающего в нижней части таблицы.Это лантаноиды, элементы с 57 по 71 - от лантана (La) до лютеция (Lu). Элементы этой группы имеют серебристо-белый цвет и тускнеют при контакте с воздухом.

Актиниды: Актиниды выстилают нижний ряд острова и включают элементы от 89, актиний (Ac) до 103, лоуренсий (Lr). Из этих элементов только торий (Th) и уран (U) встречаются на Земле в значительных количествах. Все радиоактивны. Актиниды и лантаноиды вместе образуют группу, называемую внутренними переходными металлами.

Переходные металлы: Возвращаясь к основной части таблицы, остатки групп с 3 по 12 представляют собой остальные переходные металлы. Твердые, но пластичные, блестящие и обладающие хорошей проводимостью, эти элементы - это то, о чем вы обычно думаете, когда слышите слово «металл». Здесь живут многие из лучших хитов металлического мира, в том числе золото, серебро, железо и платина.

Металлы после перехода: Перед прыжком в мир неметаллов общие характеристики не разделены аккуратно по вертикальным групповым линиям.Постпереходными металлами являются алюминий (Al), галлий (Ga), индий (In), таллий (Tl), олово (Sn), свинец (Pb) и висмут (Bi), и они охватывают группы с 13 по 17. Эти элементы обладают некоторыми из классических характеристик переходных металлов, но они, как правило, более мягкие и проводят хуже, чем другие переходные металлы. Во многих периодических таблицах жирным шрифтом будет выделена линия «лестницы» под диагональю, соединяющей бор с астатом. Постпереходные металлы расположены в нижнем левом углу этой линии.

Металлоиды: Металлоиды: бор (B), кремний (Si), германий (Ge), мышьяк (As), сурьма (Sb), теллур (Te) и полоний (Po). Они образуют лестницу, символизирующую постепенный переход от металлов к неметаллам. Эти элементы иногда ведут себя как полупроводники (B, Si, Ge), а не как проводники. Металлоиды также называют «полуметаллами» или «бедными металлами».

Неметаллы: Все остальное в правом верхнем углу лестницы - плюс водород (H), скрученный назад в Группе 1 - является неметаллом.К ним относятся углерод (C), азот (N), фосфор (P), кислород (O), сера (S) и селен (Se).

Галогены: Четыре верхних элемента Группы 17, от фтора (F) до астата (At), представляют собой одно из двух подмножеств неметаллов. Галогены довольно химически активны и имеют тенденцию образовывать пары со щелочными металлами с образованием различных типов солей. Например, поваренная соль на вашей кухне - это смесь щелочного металла натрия и галогенового хлора.

Благородные газы: Бесцветные, без запаха и почти полностью инертные, инертные или инертные газы завершают перечень в группе 18.Многие химики ожидают, что оганессон, один из четырех недавно названных элементов, будет обладать этими характеристиками; однако, поскольку этот элемент имеет период полураспада в миллисекундах, никто не смог проверить его напрямую. Оганессон завершает седьмой период таблицы Менделеева, поэтому, если кому-то удастся синтезировать элемент 119 (а гонка за это уже идет), он перейдет в цикл, чтобы начать восьмую строку в столбце щелочного металла.

Из-за цикличности, создаваемой периодичностью, дающей название таблице, некоторые химики предпочитают визуализировать таблицу Менделеева в виде круга.

Дополнительные ресурсы :

.

Что такое химия? | Живая наука

Вы можете думать о химии только в контексте лабораторных тестов, пищевых добавок или опасных веществ, но область химии включает в себя все, что нас окружает.

«Все, что вы слышите, видите, обоняние, вкус и прикосновение, связано с химией и химическими веществами (материей)», согласно Американскому химическому обществу (ACS), некоммерческой научной организации по развитию химии, учрежденной США. Конгресс. "А слышание, видение, дегустация и прикосновение - все это связано с сложной серией химических реакций и взаимодействий в вашем теле."

Итак, даже если вы не работаете химиком, вы занимаетесь химией или чем-то, что связано с химией, практически со всем, что вы делаете. В повседневной жизни вы занимаетесь химией, когда готовите, когда используете уборку. моющие средства, чтобы вытереть столешницу, когда вы принимаете лекарства или разбавляете концентрированный сок, чтобы вкус не был таким интенсивным.

Связанный: Вау! Огромный взрыв «сахарной ваты» в детской химической лаборатории

Согласно ACS, химия - это исследование материи, определяемой как все, что имеет массу и занимает пространство, а также изменения, которые материя может претерпеть, когда она находится в различных средах и условиях.Химия стремится понять не только свойства материи, такие как масса или состав химического элемента, но также то, как и почему материя претерпевает определенные изменения - трансформировалось ли что-то из-за того, что оно соединилось с другим веществом, замерзло, потому что оно оставалось на две недели в морозильник или изменил цвет из-за слишком сильного воздействия солнечного света.

Основы химии

Причина, по которой химия затрагивает все, что мы делаем, заключается в том, что почти все, что существует, можно разбить на химические строительные блоки.

Основными строительными блоками в химии являются химические элементы, которые представляют собой вещества, состоящие из одного атома. Каждое химическое вещество уникально, состоит из определенного количества протонов, нейтронов и электронов и идентифицируется по названию и химическому символу, например «C» для углерода. Элементы, которые ученые обнаружили на данный момент, перечислены в периодической таблице элементов и включают как элементы, встречающиеся в природе, такие как углерод, водород и кислород, так и созданные человеком, например Лоуренсий.

Связанный: Как элементы сгруппированы в периодической таблице?

Химические элементы могут соединяться вместе, образуя химические соединения, которые представляют собой вещества, состоящие из нескольких элементов, таких как диоксид углерода (который состоит из одного атома углерода, соединенного с двумя атомами кислорода), или нескольких атомов одного элемента, как газообразный кислород (который состоит из двух атомов кислорода, соединенных вместе). Эти химические соединения могут затем связываться с другими соединениями или элементами, образуя бесчисленное множество других веществ и материалов.

Химия - это физическая наука

Химия обычно считается физической наукой в ​​соответствии с определением Британской энциклопедии, поскольку изучение химии не связано с живыми существами. Большая часть химии, связанной с исследованиями и разработками, такими как создание новых продуктов и материалов для клиентов, входит в эту сферу.

Но, по мнению Биохимического общества, различие как физика становится немного размытым в случае биохимии, которая исследует химию живых существ.Химические вещества и химические процессы, изучаемые биохимиками, технически не считаются «живыми», но их понимание важно для понимания того, как устроена жизнь.

Химия - это физическая наука, что означает, что она не касается «живых» существ. Один из способов, которым многие люди регулярно занимаются химией, возможно, даже не осознавая этого, - это приготовление пищи и выпечка. (Изображение предоставлено Shutterstock)

Пять основных разделов химии

Согласно онлайн-учебнику химии, опубликованному LibreText, химия традиционно делится на пять основных направлений.Существуют также более специализированные области, такие как пищевая химия, химия окружающей среды и ядерная химия, но в этом разделе основное внимание уделяется пяти основным субдисциплинам химии.

Аналитическая химия включает в себя анализ химикатов и включает качественные методы, такие как изучение изменений цвета, а также количественные методы, такие как изучение точной длины волны света, который поглощается химическим веществом, приводя к изменению цвета.

Эти методы позволяют ученым охарактеризовать множество различных свойств химических веществ и могут принести пользу обществу разными способами.Например, аналитическая химия помогает пищевым компаниям делать замороженные обеды вкуснее, обнаруживая, как химические вещества в пищевых продуктах меняются с течением времени. Аналитическая химия также используется для мониторинга состояния окружающей среды, например, путем измерения химических веществ в воде или почве.

Биохимия , как упоминалось выше, использует химические методы, чтобы понять, как биологические системы работают на химическом уровне. Благодаря биохимии исследователи смогли составить карту генома человека, понять, что различные белки делают в организме, и разработать лекарства от многих болезней.

Связанный: Раскрытие генома человека: 6 молекулярных вех

Неорганическая химия изучает химические соединения в неорганических или неживых объектах, таких как минералы и металлы. Традиционно неорганическая химия рассматривает соединения, которые не , а содержат углерод (которые охватываются органической химией), но это определение не совсем точное, согласно ACS.

Некоторые соединения, изучаемые в неорганической химии, такие как «металлоорганические соединения», содержат металлы, которые связаны с углеродом - основным элементом, изучаемым в органической химии.Таким образом, такие соединения считаются частью обеих областей.

Неорганическая химия используется для создания разнообразных продуктов, включая краски, удобрения и солнцезащитные кремы.

Органическая химия занимается химическими соединениями, содержащими углерод - элемент, который считается необходимым для жизни. Химики-органики изучают состав, структуру, свойства и реакции таких соединений, которые наряду с углеродом содержат другие неуглеродные элементы, такие как водород, сера и кремний.Органическая химия используется во многих областях, как описано в ACS, таких как биотехнология, нефтяная промышленность, фармацевтика и пластмассы.

Физическая химия использует концепции физики, чтобы понять, как работает химия. Например, выяснить, как атомы движутся и взаимодействуют друг с другом, или почему некоторые жидкости, включая воду, превращаются в пар при высоких температурах. Физические химики пытаются понять эти явления в очень малом масштабе - на уровне атомов и молекул - чтобы сделать выводы о том, как работают химические реакции и что придает конкретным материалам их уникальные свойства.

Согласно ACS, этот тип исследований помогает информировать другие отрасли химии и важен для разработки продуктов. Например, физико-химики могут изучать, как определенные материалы, такие как пластик, могут реагировать с химическими веществами, с которыми материал предназначен для контакта.

Чем занимаются химики?

Химики работают в различных областях, включая исследования и разработки, контроль качества, производство, защиту окружающей среды, консалтинг и право. Согласно ACS, они могут работать в университетах, в правительстве или в частном секторе.

Вот несколько примеров того, чем занимаются химики:

Исследования и разработки

В академических кругах химики, выполняющие исследования, стремятся получить дополнительные знания по определенной теме и не обязательно имеют в виду конкретное приложение. Однако их результаты все еще могут быть применены к соответствующим продуктам и приложениям.

В промышленности химики, занимающиеся исследованиями и разработками, используют научные знания для разработки или улучшения конкретного продукта или процесса.Например, пищевые химики улучшают качество, безопасность, хранение и вкус продуктов; химики-фармацевты разрабатывают и анализируют качество лекарств и других лекарственных форм; а агрохимики разрабатывают удобрения, инсектициды и гербициды, необходимые для крупномасштабного растениеводства.

Иногда исследования и разработки могут включать не улучшение самого продукта, а скорее производственный процесс, связанный с его изготовлением. Инженеры-химики и инженеры-технологи придумывают новые способы упростить производство своей продукции и сделать ее более рентабельной, например, увеличить скорость и / или выход продукта при заданном бюджете.

Охрана окружающей среды

Химики-экологи изучают, как химические вещества взаимодействуют с природной средой, характеризуя химические вещества и химические реакции, происходящие в естественных процессах в почве, воде и воздухе. Например, ученые могут собирать почву, воду или воздух в интересующем месте и анализировать их в лаборатории, чтобы определить, загрязнила ли деятельность человека окружающую среду или повлияет на нее иным образом. Некоторые химики-экологи также могут помочь восстановить или удалить загрязняющие вещества из почвы, согласно U.С. Бюро статистики труда.

Связано: Почему удобрения опасны (инфографика)

Ученые, имеющие опыт работы в области химии окружающей среды, также могут работать консультантами в различных организациях, таких как химические компании или консалтинговые фирмы, предоставляя рекомендации о том, как можно выполнять практические действия и процедуры. соответствие экологическим нормам.

Закон

Химики могут использовать свое академическое образование, чтобы давать советы или защищать научные вопросы.Например, химики могут работать в сфере интеллектуальной собственности, где они могут применять свои научные знания к вопросам авторского права в науке, или в области экологического права, где они могут представлять группы с особыми интересами и подавать на одобрение регулирующих органов до того, как начнутся определенные действия.

Химики также могут выполнять анализы, помогающие правоохранительным органам. Химики-криминалисты собирают и анализируют вещественные доказательства, оставленные на месте преступления, чтобы помочь определить личности причастных к делу людей, а также ответить на другие жизненно важные вопросы о том, как и почему было совершено преступление.Судебные химики используют широкий спектр методов анализа, таких как хроматография и спектрометрия, которые помогают идентифицировать и количественно определять химические вещества.

Дополнительные ресурсы:

.

Смотрите также