Хлорэтан с избытком водного раствора гидроксида калия


Задания 13. Характерные химические свойства углеводородов.

Задание №1

D101F1

Основным продуктом реакции хлорэтана с избытком водного раствора гидроксида калия является

1) этилен

2) этан

3) этиловый спирт

4) этилат калия

Решение

Ответ: 3

Пояснение:

При взаимодействии хлорэтана с избытком водного раствора щелочи образуется этиловый спирт:

CH3-CH2Br + KOH(водн.) → CH3-CH2OH + KBr

Задание №2

520AF9

В схеме превращений CH4 → X → CH3NH2

веществом «X» является

  • 1. CH3NO2
  • 2. CH3ONO2
  • 3. CH3OH
  • 4. CH3COOH
Решение

Ответ: 1

Пояснение:

При нитровании метана разбавленной азотной кислотой образуется нитрометан (реакция М.И. Коновалова):

CH4 + HNO3(разб.) → CH3NO2 + H2O (нагревание)

Далее нитрогруппу до аминогруппы можно восстановить железом в соляной кислоте:

CH3NO2 + 3Fe + 6HCl → CH3NH2 + 3FeCl2 + 2H2O

Fe0 − 2e → Fe+2 | × 3 окисление

N+4 + 6e → N−2 | × 1 восстановление

Задание №3

641BF6

Этан может вступать в реакции

1) замещения

2) присоединения

3) изомеризации

4) разложения

5) горения

6) полимеризации

Решение

Ответ: 145

1) Этан вступает в реакции галогенирования (тип реакции - радикальное замещение, замещение атомов водорода на галоген носит последовательный цепной характер) под действием света или при нагревании:

2) Термическое дегидрирование этана при 550-650 ˚C приводит к образованию этилена:

При температурах свыше 800 ˚C образуется ацетилен:

3) Алканы горят светлым некоптящим пламенем:

нуклеофильного замещения - галогеноалканы и гидроксид-ионы

Факты

Если галогеноалкан нагревают с обратным холодильником с раствором гидроксида натрия или калия, галоген заменяется на -ОН и образуется спирт. Нагревание с обратным холодильником означает нагрев с конденсатором, установленным вертикально в колбе, чтобы предотвратить потерю летучих веществ из смеси.

Растворитель обычно представляет собой смесь этанола и воды 50/50, потому что в ней все растворяется.Галогеноалкан не растворим в воде. Если вы использовали только воду в качестве растворителя, галогеноалкан и раствор гидроксида натрия не смешались, и реакция могла бы произойти только там, где два слоя встречаются.

Например, используя 1-бромпропан в качестве типичного первичного галогеноалкана:

Вы могли бы написать полное уравнение, а не ионное, но оно немного скрывает то, что происходит:

Бром (или другой галоген) в галогеноалкане просто заменяется группой -ОН - отсюда реакция замещения.В этом примере образуется пропан-1-ол.

Механизм

Вот механизм реакции с участием бромэтана:

Это пример нуклеофильной замены .

Поскольку механизм включает столкновение между двумя частицами на медленной стадии (в данном случае единственной стадии) реакции, он известен как реакция S N 2.

,

Реакции в водном растворе

Растворителем в водных растворах является вода, которая составляет около 70% массы человеческого тела и необходима для жизни. Многие химические реакции, которые поддерживают нашу жизнь, зависят от взаимодействия молекул воды с растворенными соединениями. Более того, как мы обсудим в главе 5 «Энергетические изменения в химических реакциях», присутствие большого количества воды на поверхности Земли помогает поддерживать температуру ее поверхности в диапазоне, подходящем для жизни.В этом разделе мы опишем некоторые взаимодействия воды с различными веществами и познакомим вас с характеристиками водных растворов.

Полярные вещества

Как показано на рисунке 4.1 «Полярная природа воды», отдельная молекула воды состоит из двух атомов водорода, связанных с атомом кислорода в изогнутой (V-образной) структуре. Как типично для элементов группы 16, атом кислорода в каждой ковалентной связи O – H притягивает электроны сильнее, чем атом водорода.(Для получения дополнительной информации о группах периодической таблицы и ковалентной связи см. Главу 2 «Молекулы, ионы и химические формулы» и главу 7 «Периодическая таблица и периодические тенденции».) Следовательно, ядра кислорода и водорода не имеют одинаковых электронов. Вместо этого атомы водорода бедны электронами по сравнению с нейтральным атомом водорода и имеют частичный положительный заряд, что обозначено δ + . Атом кислорода, напротив, более богат электронами, чем нейтральный атом кислорода, поэтому он имеет частичный отрицательный заряд.Этот заряд должен быть в два раза больше, чем частичный положительный заряд каждого водорода, чтобы молекула имела нулевой чистый заряд. Таким образом, его заряд обозначается 2δ - . Это неравномерное распределение заряда создает полярную связь - химическую связь, в которой существует неравное распределение заряда между связывающими атомами, в которой одна часть молекулы несет частичный отрицательный заряд, а другая часть несет частичный положительный заряд (рис. 4.1 «Полярная природа воды»).Из-за расположения полярных связей в молекуле воды вода описывается как полярное вещество.

Рисунок 4.1. Полярная природа воды

Каждая молекула воды состоит из двух атомов водорода, связанных с атомом кислорода в изогнутой (V-образной) структуре. Поскольку атом кислорода притягивает электроны сильнее, чем атомы водорода, атом кислорода частично заряжен отрицательно (2δ - ; синий), а атомы водорода частично заряжены положительно (δ + ; красный).Чтобы молекула имела нулевой чистый заряд, частичный отрицательный заряд кислорода должен быть вдвое больше, чем частичный положительный заряд каждого водорода.

Из-за асимметричного распределения заряда в молекуле воды соседние молекулы воды удерживаются вместе за счет притягивающих электростатических (δ + … δ - ) взаимодействий между частично отрицательно заряженным атомом кислорода одной молекулы и частично положительно заряженными атомами водорода. соседних молекул (рисунок 4.2 «Структура жидкой воды»). Чтобы преодолеть это электростатическое притяжение, необходима энергия. Фактически, без них вода испарялась бы при гораздо более низкой температуре, и ни океаны Земли, ни мы не существовали бы!

Рисунок 4.2 Структура жидкой воды

Показаны два вида молекулы воды: (а) шарообразная структура и (б) модель, заполняющая пространство. Молекулы воды удерживаются вместе за счет электростатического притяжения (пунктирные линии) между частично отрицательно заряженным атомом кислорода одной молекулы и частично положительно заряженными атомами водорода соседних молекул.В результате молекулы воды в жидкой воде образуют временные сети со структурой, подобной показанной. Поскольку взаимодействия между молекулами воды постоянно нарушаются и преобразовываются, жидкая вода не имеет единой фиксированной структуры.

Как вы узнали из Раздела 2.1 «Химические соединения», ионные соединения, такие как хлорид натрия (NaCl), также удерживаются вместе за счет электростатических взаимодействий - в данном случае между противоположно заряженными ионами в высокоупорядоченном твердом теле, где каждый ион окружен ионами. противоположного заряда в фиксированном расположении.В отличие от ионного твердого тела, структура жидкой воды не полностью упорядочена, потому что взаимодействия между молекулами в жидкости постоянно нарушаются и преобразуются.

Неравномерное распределение заряда в полярных жидкостях, таких как вода, делает их хорошими растворителями для ионных соединений. Когда твердое ионное вещество растворяется в воде, ионы диссоциируют . То есть частично отрицательно заряженные атомы кислорода молекул H 2 O окружают катионы (Na + в случае NaCl), а частично положительно заряженные атомы водорода в H 2 O окружают анионы (Cl - ; рисунок 4.3 «Растворение хлорида натрия в воде»). Отдельные катионы и анионы, каждый из которых окружен своей собственной оболочкой из молекул воды, называются гидратированными ионами. Отдельные катионы и анионы, каждый из которых окружен своей собственной оболочкой из молекул воды. Мы можем описать растворение NaCl в воде как

Уравнение 4.1

NaCl (ы) → H3O (л) Na +, (р) + Cl- (водн)

, где (aq) означает, что Na + и Cl - являются гидратированными ионами.

Рисунок 4.3 Растворение хлорида натрия в воде

Ионное твердое вещество, такое как хлорид натрия, растворяется в воде из-за электростатического притяжения между катионами (Na + ) и частично отрицательно заряженными атомами кислорода молекул воды, а также между анионами (Cl - ) и частично положительно заряженными атомами. заряженные атомы водорода воды.

Обратите внимание на узор

Полярные жидкости - хорошие растворители для ионных соединений.

Электролиты

Когда к раствору прикладывается электричество в виде электрического потенциала , ионы в растворе мигрируют к противоположно заряженному стержню или пластине, замыкая электрическую цепь, в то время как нейтральные молекулы в растворе - нет (Рис. 4.4 «Эффект ионов на электропроводность воды »). Таким образом, растворы, содержащие ионы, проводят электричество, а растворы, содержащие только нейтральные молекулы, нет.Электрический ток будет протекать через цепь, показанную на рисунке 4.4 «Влияние ионов на электропроводность воды», и лампа будет светиться только , если присутствуют ионы. Чем ниже концентрация ионов в растворе, тем слабее ток и тусклее свечение. Например, чистая вода содержит очень низкие концентрации ионов, поэтому она плохо проводит электрический ток.

Обратите внимание на узор

Растворы, содержащие ионы, проводят электричество.

Рисунок 4.4. Влияние ионов на электропроводность воды

Электрический ток будет течь и зажигать лампочку, только если раствор содержит ионы. (а) Чистая вода или водный раствор неэлектролита пропускает ток, и лампочка не горит. (б) Слабый электролит производит несколько ионов, позволяя протекать некоторому току и тускло светиться лампочка. (c) Сильный электролит производит много ионов, позволяя протекать большему току и ярко светить лампочке.

Электролит Любое соединение, которое может образовывать ионы при растворении в воде (например, неэлектролиты). Электролиты могут быть сильными или слабыми. представляет собой любое соединение, которое может образовывать ионы при растворении в воде. При сильных электролитах Электролит, который полностью диссоциирует на ионы при растворении в воде, образуя водный раствор, который очень хорошо проводит электричество. растворяются, составляющие ионы полностью диссоциируют из-за сильного электростатического взаимодействия с растворителем, образуя водные растворы, которые очень хорошо проводят электричество (Рисунок 4.4 «Влияние ионов на электропроводность воды»). Примеры включают ионные соединения, такие как хлорид бария (BaCl 2 ) и гидроксид натрия (NaOH), которые являются сильными электролитами и диссоциируют следующим образом:

Уравнение 4.2

BaCl2 (ы) → H3O (л) Ва2 + (водно) + 2Cl- (водно)

Уравнение 4.3

NaOH (ы) → H3O (л) Na +, (р) + ОН- (водн)

Одиночные стрелки от реагента к продуктам в уравнении 4.2 и уравнение 4.3 показывают, что диссоциация завершена.

Со слабыми электролитами: Соединение, которое при растворении в воде образует относительно мало ионов, образуя водный раствор, который плохо проводит электричество. растворяются, они производят относительно мало ионов в растворе. Это не , а не означает, что соединения плохо растворяются в воде; многие слабые электролиты содержат полярные связи и поэтому хорошо растворяются в полярном растворителе, таком как вода. Однако они не полностью диссоциируют с образованием ионов из-за их более слабого электростатического взаимодействия с растворителем.Поскольку очень мало растворенных частиц являются ионами, водные растворы слабых электролитов не проводят электричество так же, как растворы сильных электролитов. Одним из таких соединений является уксусная кислота (CH 3 CO 2 H), которая содержит звено –CO 2 H. Хотя он растворим в воде, это слабая кислота и, следовательно, также слабый электролит. Точно так же аммиак (NH 3 ) является слабым основанием и, следовательно, слабым электролитом. Поведение слабых кислот и слабых оснований будет описано более подробно при обсуждении кислотно-основных реакций в разделе 4.6 «Кислотно-основные реакции».

Неэлектролиты: Вещество, которое растворяется в воде с образованием нейтральных молекул и практически не влияет на электрическую проводимость. которые растворяются в воде как нейтральные молекулы и, таким образом, практически не влияют на проводимость. Примерами неэлектролитов, которые хорошо растворимы в воде, но по существу не проводят ток, являются этанол, этиленгликоль, глюкоза и сахароза, все из которых содержат группу –OH, характерную для спиртов.В главе 8 «Ионная и ковалентная связь» мы обсудим, почему спирты и карбоновые кислоты по-разному ведут себя в водном растворе; пока, однако, вы можете просто поискать присутствие групп –OH и –CO 2 H, пытаясь предсказать, является ли вещество сильным электролитом, слабым электролитом или неэлектролитом. Помимо спиртов, два других класса органических соединений, которые не являются электролитами, представляют собой альдегиды - класс органических соединений, которые имеют общую форму RCHO, в которой атом углерода карбонильной группы связан с атомом водорода и группой R.Группа R может быть либо другим атомом водорода, либо алкильной группой (например, кетоном). и кетоны - класс органических соединений с общей формой RC (O) R ’, в которых атом углерода карбонильной группы связан с двумя алкильными группами (например, альдегидом). Алкильные группы могут быть одинаковыми или разными, общие структуры которых показаны здесь. Различия между растворимыми и нерастворимыми веществами, а также между сильными, слабыми и неэлектролитами показаны на Рисунке 4.5 «Разница между растворимыми и нерастворимыми соединениями (а) и сильными, слабыми и неэлектролитами (b)».

Обратите внимание на узор

Ионные вещества и карбоновые кислоты являются электролитами; спирты, альдегиды и кетоны не являются электролитами.

Общая структура альдегида и кетона. Обратите внимание, что оба содержат группу C = O.

Рисунок 4.5 Разница между растворимыми и нерастворимыми соединениями (а) и сильными, слабыми и неэлектролитами (б)

Когда растворимое соединение растворяется, составляющие его атомы, молекулы или ионы рассеиваются в растворителе.Напротив, компоненты нерастворимого соединения остаются связанными друг с другом в твердом веществе. Растворимое соединение является сильным электролитом, если оно полностью диссоциирует на ионы, слабым электролитом, если оно лишь незначительно диссоциирует на ионы, и неэлектролитом, если оно растворяется с образованием только нейтральных молекул.

Пример 1

Предскажите, является ли каждое соединение сильным электролитом, слабым электролитом или неэлектролитом в воде.

  1. формальдегид

  2. хлорид цезия

Дано: соединение

Запрошено: относительная способность образовывать ионы в воде

Стратегия:

A Соединение классифицируется как ионное или ковалентное.

B Если соединение является ионным и растворяется, это сильный электролит, который полностью диссоциирует в воде с образованием раствора, который хорошо проводит электричество. Если соединение ковалентное и органическое, определите, содержит ли оно группу карбоновой кислоты. Если соединение содержит эту группу, это слабый электролит. Если нет, то это неэлектролит.

Решение:

  1. A Формальдегид - это органическое соединение, поэтому оно ковалентно. B Он содержит альдегидную группу, а не группу карбоновой кислоты, поэтому он должен быть неэлектролитом.
  2. A Хлорид цезия (CsCl) представляет собой ионное соединение, состоящее из ионов Cs + и Cl - . B Как практически все другие ионные соединения, растворимые в воде, хлорид цезия полностью диссоциирует на ионы Cs + (водн.) И Cl - (водн.). Следовательно, это должен быть сильный электролит.

Упражнение

Предскажите, является ли каждое соединение сильным электролитом, слабым электролитом или неэлектролитом в воде.

  1. (CH 3 ) 2 CHOH (2-пропанол)

  2. сульфат аммония

Ответ:

  1. неэлектролит
  2. сильный электролит

Сводка

Большинство химических реакций осуществляется в растворах , которые представляют собой гомогенные смеси двух или более веществ.В растворе растворенное вещество (вещество, присутствующее в меньшем количестве) диспергировано в растворителе (вещество, присутствующее в большем количестве). Водные растворы содержат воду в качестве растворителя, тогда как неводные растворы содержат растворители, отличные от воды.

Полярные вещества, такие как вода, содержат асимметричное расположение полярных связей , в которых электроны распределяются неравномерно между связанными атомами. Полярные вещества и ионные соединения, как правило, наиболее растворимы в воде, поскольку они благоприятно взаимодействуют с ее структурой.В водном растворе растворенные ионы становятся гидратированными ; то есть их окружает оболочка из молекул воды.

Вещества, растворяющиеся в воде, можно разделить на категории в зависимости от того, проводят ли полученные водные растворы электричество. Сильные электролиты полностью диссоциируют на ионы с образованием растворов, хорошо проводящих электричество. Слабые электролиты производят относительно небольшое количество ионов, в результате чего растворы плохо проводят электричество. Неэлектролиты растворяются в виде незаряженных молекул и не влияют на электропроводность воды.

Ключевые вынос

  • Водные растворы можно разделить на полярные и неполярные в зависимости от того, насколько хорошо они проводят электричество.

Концептуальные проблемы

  1. Каковы преимущества проведения реакции в растворе по сравнению с простым смешиванием чистых реагентов?

  2. Какие типы соединений растворяются в полярных растворителях?

  3. Опишите распределение заряда в жидкой воде.Как это распределение влияет на его физические свойства?

  4. Должна ли молекула иметь асимметричное распределение заряда, чтобы быть полярной? Поясните свой ответ.

  5. Почему многие ионные вещества растворимы в воде?

  6. Объясните фразу , как растворяется, как .

  7. Какие ковалентные соединения растворимы в воде?

  8. Почему большинство ароматических углеводородов имеют лишь ограниченную растворимость в воде? Ожидаете ли вы, что их растворимость в этаноле будет выше, ниже или такая же по сравнению с водой? Зачем?

  9. Предскажите, будет ли каждое соединение растворяться в воде, и объясните, почему.

    1. толуол
    2. уксусная кислота
    3. натрия ацетат
    4. бутанол
    5. пентановая кислота
  10. Предскажите, будет ли каждое соединение растворяться в воде, и объясните, почему.

    1. хлорид аммония
    2. 2-пропанол
    3. гептан
    4. дихромат калия
    5. 2-октанол
  11. Учитывая воду и толуол, предскажите, какой растворитель лучше для каждого соединения, и объясните свои рассуждения.

    1. цианид натрия
    2. бензол
    3. уксусная кислота
    4. этоксид натрия (CH 3 CH 2 ONa)
  12. Из воды и толуола, предскажите, какой растворитель лучше для каждого соединения, и объясните свои рассуждения.

    1. т -бутанол
    2. хлорид кальция
    3. сахароза
    4. циклогексен
  13. Соединение A делится на три равных образца. Первый образец не растворяется в воде, второй образец лишь незначительно растворяется в этаноле, а третий образец полностью растворяется в толуоле.Что это говорит о полярности A ?

  14. Вам дается смесь трех твердых соединений - A, , B, и C, , и вам говорят, что A, - полярное соединение, B - слегка полярное соединение, а C - неполярное. Предложите способ разделения этих трех соединений.

  15. Лаборанту дают образец, содержащий только хлорид натрия, сахарозу и циклодеканон (кетон).Вы должны сказать технику, как отделить эти три соединения от смеси. Что ты предлагаешь?

  16. Многие безрецептурные препараты продаются в виде растворов этанол / вода, а не в виде чисто водных растворов. Назовите правдоподобную причину такой практики.

  17. Чем отличается слабый электролит от сильного электролита?

  18. Какие органические группы образуют водные растворы, проводящие электричество?

  19. Бросаться босиком в лужу во время грозы считается очень опасным.Зачем?

  20. Какие решения, по вашему мнению, будут хорошо проводить электричество? Объясните свои рассуждения.

    1. водный раствор натрия хлорида
    2. раствор этанола в воде
    3. раствор хлорида кальция в воде
    4. раствор сахарозы в воде
  21. Какие решения, по вашему мнению, будут хорошо проводить электричество? Объясните свои рассуждения.

    1. водный раствор уксусной кислоты
    2. водный раствор гидроксида калия
    3. раствор этиленгликоля в воде
    4. раствор хлорида аммония в воде
  22. Что из перечисленного является сильным электролитом, слабым электролитом или неэлектролитом в водном растворе? Объясните свои рассуждения.

    1. гидроксид калия
    2. аммиак
    3. хлорид кальция
    4. бутановая кислота
  23. Что из перечисленного является сильным электролитом, слабым электролитом или неэлектролитом в водном растворе? Объясните свои рассуждения.

    1. гидроксид магния
    2. бутанол
    3. бромид аммония
    4. пентановая кислота
  24. Что из следующего является сильным электролитом, слабым электролитом или неэлектролитом в водном растворе? Объясните свои рассуждения.

    1. H 2 SO 4
    2. диэтиламин
    3. 2-пропанол
    4. хлорид аммония
    5. пропановая кислота

ответов

  1. Ионные соединения, такие как NaCl, удерживаются вместе за счет электростатических взаимодействий между противоположно заряженными ионами в высокоупорядоченном твердом теле.Когда ионное соединение растворяется в воде, частично отрицательно заряженные атомы кислорода в молекулах H 2 O окружают катионы, а частично положительно заряженные атомы водорода в H 2 O окружают анионы. Благоприятные электростатические взаимодействия между водой и ионами компенсируют потерю электростатических взаимодействий между ионами в твердом теле.

    1. Поскольку толуол представляет собой ароматический углеводород, в котором отсутствуют полярные группы, маловероятно, что он образует гомогенный раствор в воде.
    2. Уксусная кислота содержит группу карбоновой кислоты, присоединенную к небольшой алкильной группе (метильная группа). Следовательно, полярные характеристики группы карбоновой кислоты будут доминирующими, и уксусная кислота будет образовывать гомогенный раствор с водой.
    3. Поскольку большинство солей натрия растворимы, ацетат натрия должен образовывать гомогенный раствор с водой.
    4. Как и все спирты, бутанол содержит группу -ОН, которая может хорошо взаимодействовать с водой.Алкильная группа довольно большая, состоит из 4-углеродной цепи. В этом случае неполярный характер алкильной группы, вероятно, будет так же важен, как полярный характер -ОН, уменьшая вероятность того, что бутанол образует гомогенный раствор с водой.
    5. Как и уксусная кислота, пентановая кислота представляет собой карбоновую кислоту. Однако, в отличие от уксусной кислоты, алкильная группа довольно большая и состоит из 4-углеродной цепи, как в бутаноле. Как и в случае с бутанолом, неполярный характер алкильной группы, вероятно, так же важен, как полярный характер группы карбоновой кислоты, что делает маловероятным образование пентановой кислоты гомогенного раствора с водой.(Фактически, растворимость бутанола и пентановой кислоты в воде довольно низкая, всего около 3 г на 100 г воды при 25 ° C.)
  2. Электролит - это любое соединение, которое может образовывать ионы при растворении в воде.Когда сильный электролит растворяется в воде, он полностью диссоциирует с образованием составляющих ионов. Напротив, когда слабый электролит растворяется в воде, он производит относительно мало ионов в растворе.

,

Различные реакции галогенов

На этот раз мы можем говорить только о реакциях хлора, брома и йода. Где бы у вас ни были растворы, фтор вступает в реакцию с водой.

Хлор и бром являются достаточно сильными окислителями, чтобы окислять ионы железа (II) до ионов железа (III). При этом хлор восстанавливается до хлорид-ионов; бром в бромид-ионы.

Для уравнения брома просто замените Cl на Br.

Очень бледно-зеленый раствор, содержащий ионы железа (II), превратится в желтый или оранжевый раствор, содержащий ионы железа (III).

Йод не является достаточно сильным окислителем, чтобы окислять ионы железа (II), поэтому реакции нет. На самом деле происходит обратная реакция. Ионы железа (III) являются достаточно сильными окислителями, чтобы окислять иодид-ионы до йода:

Еще раз, мы просто посмотрим на это для хлора, брома и йода. Мы начнем с подробного рассмотрения случая хлора, потому что именно с ним вы, скорее всего, столкнетесь.

 

Реакция хлора с холодным раствором гидроксида натрия

Реакция между хлором и разбавленным холодным раствором гидроксида натрия:

NaClO (иногда обозначаемый как NaOCl) представляет собой хлорат натрия (I).Старое название для этого - гипохлорит натрия, а раствор в правой части уравнения - это то, что обычно продается как отбеливатель.

Теперь подумайте об этом в терминах степеней окисления.

Очевидно, что хлор изменил степень окисления, потому что он попал в соединения, начиная с исходного элемента. Проверка всех степеней окисления показывает:

Хлор только вещь, чтобы изменить степень окисления. Он был окислен или восстановлен? Да! Обе! Один атом был восстановлен, потому что его степень окисления упала.Другой был окислен.

Это хороший пример реакции диспропорционирования . Реакция диспропорционирования - это реакция, в которой одно вещество одновременно окисляется и восстанавливается.

 

Реакция хлора с горячим раствором гидроксида натрия

Реакция между хлором и горячим концентрированным раствором гидроксида натрия:

Незнакомый продукт на этот раз - хлорат натрия (V) - NaClO 3 .

Как и раньше, проверьте степень окисления всего в уравнении. И снова вы обнаружите, что единственное, что нужно изменить, - это хлор. Он изменяется от 0 в молекулах хлора в левой части до -1 (в NaCl) и +5 (в NaClO 3 ).

Это тоже реакция диспропорционирования.

 

Построение уравнений для этих реакций

На самом деле, первый простой, и большинство людей просто его записали бы.Второй вариант сложнее, и один из способов его наращивания - использовать степени окисления.

Вам необходимо знать два основных продукта реакции. Так что запишите это:

А теперь подумайте об изменениях степени окисления. Чтобы перейти к NaCl, степень окисления хлора упала с 0 до -1.

Чтобы перейти на NaClO 3 , он увеличился с 0 до +5.

Положительные и отрицательные изменения степени окисления должны уравновешиваться, поэтому на каждый образованный NaClO 3 должно приходиться 5 NaCl.Запишите это:

Теперь уравновесить натрий и хлор - несложная задача. Когда вы закончите, вы обнаружите, что у вас осталось достаточно водорода и кислорода, чтобы получить 3H 2 О. Это кажется разумным!

 

Реакции с участием брома и йода

По сути, они похожи на хлор, разница в температурах, при которых что-то происходит. Тенденция к образованию иона с галогеном в степени окисления +5 быстро возрастает по мере того, как вы спускаетесь по группе.

Раствор брома и гидроксида натрия

В случае брома образование бромата натрия (V) происходит при гораздо более низкой температуре, вплоть до комнатной. Если вы хотите приготовить раствор бромата натрия (I), вы должны провести реакцию при температуре около 0 ° C.

Раствор йода и гидроксида натрия

В этом случае вы получаете йодат натрия (V) независимо от температуры. Коттон и Уилкинсон (Advanced Inorganic Chemistry, 3-е издание, стр. 477) говорят, что ион йодата (I) неизвестен в растворе.

,

Смотрите также