Минимальная степень окисления калия


Таблица степеней окисления химических элементов. Максимальная и минимальная степень окисления. Возможные степени окисления химических элементов.





Адрес этой страницы (вложенность) в справочнике dpva.ru:  главная страница  / / Техническая информация / / Химический справочник / / Таблица Менделеева. Названия. Электронные формулы. Молярные массы. Структурные формулы. Таблицы степеней окисления и валентности. Изотопы.  / / Таблица степеней окисления химических элементов. Максимальная и минимальная степень окисления. Возможные степени окисления химических элементов.

Поделиться:   

Таблица степеней окисления химических элементов. Возможные степени окисления химических элементов. Стандартные, высшие, низшие, редкие степени окисления, исключения. Максимальная степень окисления и минимальная степень окисления.

Степень окисления – это условный заряд атомов химического элемента в соединении, вычисленный из предположения, что все связи имеют ионный тип. Степени окисления могут иметь положительное, отрицательное или нулевое значение, поэтому алгебраическая сумма степеней окисления элементов в молекуле с учётом числа их атомов равна 0, а в ионе – заряду иона.
  1. Степени окисления металлов в соединениях всегда положительные.
  2. Высшая степень окисления соответствует номеру группы периодической системы, где находится данный элемент (исключение составляют: Au+3 (I группа), Cu+2 (II), из VIII группы степень окисления +8 может быть только у осмия Os и рутения Ru.
  3. Степени окисления неметаллов зависят от того, с каким атомом он соединён:
    • если с атомом металла, то степень окисления отрицательная;
    • если с атомом неметалла то степень окисления может быть и положительная, и отрицательная. Это зависит от электроотрицательности атомов элементов.
  4. Высшую отрицательную степень окисления неметаллов можно определить вычитанием из 8 номера группы, в которой находится данный элемент, т.е. высшая положительная степень окисления равна числу электронов на внешнем слое, которое соответствует номеру группы.
  5. Степени окисления простых веществ равны 0, независимо от того металл это или неметалл.
  6. В неорганической химии обычно применяется понятие степень окисления, а в органической химии — валентность, так как многие из неорганических веществ имеют немолекулярное строение, а органических — молекулярное.
Таблица: Элементы с неизменными степенями окисления.
Элемент Характерная степень окисления

Степени окисления (степени окисления)

 

Использование степеней окисления для определения того, что было окислено, а что восстановлено

Это наиболее распространенное использование степеней окисления.

Помните:

Окисление связано с увеличением степени окисления

Восстановление предполагает снижение степени окисления

В каждом из следующих примеров мы должны решить, включает ли реакция окислительно-восстановительный потенциал, и если да, то что было окислено, а что восстановлено.

Пример 1:

Это реакция между магнием и соляной кислотой или газообразным хлористым водородом:

Изменилась ли степень окисления чего-либо? Да, есть - у вас есть два элемента, которые находятся в соединениях с одной стороны уравнения и как несоединенные элементы с другой. Чтобы быть уверенным, проверьте все степени окисления :.

Степень окисления магния увеличилась - он окислился. Степень окисления водорода упала - она ​​уменьшилась.Хлор находится в одной и той же степени окисления по обе стороны уравнения - он не был окислен или восстановлен.

Пример 2:

Реакция между гидроксидом натрия и соляной кислотой:

Проверка всех степеней окисления:

Ничего не изменилось. Это не окислительно-восстановительная реакция.

Пример 3:

Это подлый! Реакция между хлором и холодным разбавленным раствором гидроксида натрия:

Очевидно, что хлор изменил степень окисления, потому что он попал в соединения, начиная с исходного элемента.Проверка всех степеней окисления показывает:

Хлор только вещь, чтобы изменить степень окисления. Он был окислен или восстановлен? Да! Обе! Один атом был восстановлен, потому что его степень окисления упала. Другой был окислен.

Это хороший пример реакции диспропорционирования . Реакция диспропорционирования - это реакция, в которой одно вещество одновременно окисляется и восстанавливается.

 

Использование степеней окисления для определения окислителя и восстановителя

Это лишь незначительное дополнение к последнему разделу.Если вы знаете, что было окислено, а что восстановлено, вы можете легко определить, что такое окислитель и восстановитель.

Пример 1

Это реакция между ионами хрома (III) и металлическим цинком:

Степень окисления хрома изменилась с +3 до +2, поэтому он был восстановлен. Цинк перешел от нулевой степени окисления в элементе до +2. Он окислился.

Итак, что делает сокращение? Это цинк - цинк отдает электроны ионам хрома (III).Итак, цинк - это восстановитель.

Точно так же вы можете определить, что окислителем должны быть ионы хрома (III), потому что они отбирают электроны у цинка.

Пример 2

Это уравнение реакции между ионами манганата (VII) и ионами железа (II) в кислых условиях. Это прорабатывается далее на странице.

Если взглянуть быстро, становится очевидно, что ионы железа (II) окислены до ионов железа (III).Каждый из них потерял электрон, а их степень окисления увеличилась с +2 до +3.

Водород все еще находится в степени окисления +1 до и после реакции, но ионы манганата (VII) явно изменились. Если определить степень окисления марганца, то она упала с +7 до +2 - снижение.

Итак, ионы железа (II) окислены, а ионы манганата (VII) восстановлены.

Что восстановило ионы манганата (VII) - ясно, что это ионы железа (II).Железо - единственное, что имеет измененную степень окисления. Итак, ионы железа (II) являются восстановителем.

Точно так же ионы манганата (VII) должны быть окислителем.

 

Использование степеней окисления для определения реакционных соотношений

Это иногда полезно, когда вам нужно разработать реакционные пропорции для использования в реакциях титрования, где у вас недостаточно информации, чтобы разработать полное ионное уравнение.

Помните, что каждый раз, когда степень окисления изменяется на одну единицу, переносится один электрон. Если степень окисления одного вещества в реакции падает на 2, это означает, что оно приобрело 2 электрона.

Что-то еще в реакции должно терять эти электроны. Любое снижение степени окисления одним веществом должно сопровождаться повышением такой же степени окисления другим веществом.

 

Этот пример основан на информации из старого вопроса AQA уровня A.

Ионы, содержащие церий в степени окисления +4, являются окислителями. (Они сложнее, чем просто Ce 4+ .) Они могут окислять ионы, содержащие молибден, от степени окисления +2 до +6 (от Mo 2+ до MoO 4 2- ). При этом церий восстанавливается до степени окисления +3 (Ce 3+ ). Какие пропорции реагирования?

Степень окисления молибдена увеличивается на 4. Это означает, что степень окисления церия должна снизиться на 4 для компенсации.

Но степень окисления церия в каждом из его ионов падает только с +4 до +3, то есть на 1. Таким образом, очевидно, что на каждый ион молибдена должно приходиться 4 иона церия.

Процент реагентов: 4 церийсодержащих иона на 1 ион молибдена.

 

Или, если взять более общий пример, включающий ионы железа (II) и ионы манганата (VII). . .

Раствор манганата калия (VII), KMnO 4 , подкисленный разбавленной серной кислотой, окисляет ионы железа (II) до ионов железа (III).При этом ионы манганата (VII) восстанавливаются до ионов марганца (II). Используйте степени окисления, чтобы составить уравнение реакции.

Степень окисления марганца в ионе манганата (VII) +7. Название говорит вам об этом, но попробуйте еще раз для практики!

При переходе к ионам марганца (II) степень окисления марганца снизилась на 5. Каждый ион железа (II), который вступает в реакцию, увеличивает степень окисления на 1. Это означает, что должно быть пять ионов железа (II), реагирующих на каждый ион манганата (VII).

Таким образом, левая часть уравнения будет: MnO 4 - + 5Fe 2+ +?

Правая часть будет: Mn 2+ + 5Fe 3+ +?

После этого вам придется гадать, как уравновесить оставшиеся атомы и заряды. В этом случае, например, весьма вероятно, что кислород попадет в воду. Это означает, что вам откуда-то нужен водород.

Это не проблема, потому что реакция протекает в растворе кислоты, поэтому водород вполне может происходить из ионов водорода.

В конечном итоге вы получите это:

Лично я предпочел бы выводить эти уравнения из электронных полууравнений!

.

степеней окисления (числа окисления) - Chemistry LibreTexts

Степени окисления упрощают процесс определения того, что окисляется, а что восстанавливается в окислительно-восстановительных реакциях. Однако для целей этого введения было бы полезно рассмотреть и ознакомиться со следующими концепциями:

  • окисление и восстановление с точки зрения переноса электрона
  • электронных полууравнений

Чтобы проиллюстрировать эту концепцию, рассмотрим элемент ванадий, который образует ряд различных ионов (например,{2-}} \]

Здесь сера имеет степень окисления -2.

Сводка

Степень окисления атома равна общему количеству электронов, которые были удалены из элемента (создавая положительную степень окисления) или добавлены к элементу (создавая отрицательную степень окисления), чтобы достичь своего текущего состояния.

  • Окисление связано с увеличением степени окисления
  • Восстановление включает снижение степени окисления

Распознавание этой простой закономерности - ключ к пониманию концепции степеней окисления.Изменение степени окисления элемента во время реакции определяет, был ли он окислен или восстановлен без использования электронных полууравнений.

Определение степени окисления

Подсчет числа перенесенных электронов - неэффективный и трудоемкий способ определения степени окисления. Эти правила обеспечивают более простой метод.

Правила определения степени окисления

  • Степень окисления несоединенного элемента равна нулю.Это применимо независимо от структуры элемента: Xe, Cl 2 , S 8 , и каждая большая структура углерода или кремния имеет нулевую степень окисления.
  • Сумма степеней окисления всех атомов или ионов в нейтральном соединении равна нулю.
  • Сумма степеней окисления всех атомов в ионе равна заряду иона.
  • Более электроотрицательному элементу в веществе присваивается отрицательная степень окисления.Менее электроотрицательный элемент получает положительную степень окисления. Помните, что электроотрицательность максимальна в верхнем правом углу таблицы Менделеева и уменьшается в нижнем левом углу.
  • Некоторые элементы почти всегда имеют одинаковую степень окисления в своих соединениях:
Элемент Обычная степень окисления Исключения
Металлы 1 группы Всегда +1
Металлы 2 группы Всегда +2
Кислород Обычно -2 Пероксиды и F 2 O (см. Ниже)
Водород Обычно +1 Гидриды металлов (-1) (см. Ниже)
фтор Всегда -1
Хлор обычно -1 Соединения с O или F (см. Ниже)

Причины исключения

Водород в гидридах металлов : Гидриды металлов включают такие соединения, как гидрид натрия, NaH.Здесь водород существует в виде гидрид-иона H - . Степень окисления простого ионоподобного гидрида равна заряду иона - в данном случае -1.

В качестве альтернативы сумма степеней окисления нейтрального соединения равна нулю. Поскольку металлы группы 1 всегда имеют степень окисления +1 в своих соединениях, отсюда следует, что водород должен иметь степень окисления -1 (+1 -1 = 0).

Кислород в пероксидах : Пероксиды включают пероксид водорода, H 2 O 2 .Это электрически нейтральное соединение, поэтому сумма окисления составляет

.

Периодическая таблица состояний окисления - Сложный процент

Нажмите, чтобы увеличить

Существует целый ряд периодических таблиц, и я уже добавил их в кучу с периодической таблицей данных ранее. Сегодняшний пост - еще одна вариация на эту тему: периодическая таблица, показывающая возможные и общие степени окисления каждого элемента. На прошлой неделе я искал один из них из интереса и не смог найти ни одного, в котором информация была бы представлена ​​в простой для понимания форме.Чтобы попытаться решить эту проблему, я составил таблицу, которую вы видите в верхней части сообщения здесь.

Не химикам, вероятно, стоит уточнить, что мы подразумеваем под «степенью окисления». На самом деле это довольно простая концепция для химиков, но ее сложно определить. По сути, это число, присвоенное элементу в соединении, и (на базовом уровне) обозначает количество электронов, которые были удалены или добавлены к этому элементу. Элемент, который не комбинируется с другими элементами, имеет степень окисления 0, потому что в него не добавлялись и не удалялись электроны.

Атом элемента в соединении будет иметь положительную степень окисления, если из него были удалены электроны. Сначала это может показаться нелогичным, но помните, что электроны заряжены отрицательно. Следовательно, удаление отрицательных зарядов с атома приводит к положительной степени окисления. Точно так же добавление электронов приводит к отрицательной степени окисления. Сумма всех степеней окисления различных элементов в соединении должна быть равна нулю.

Если ваш единственный опыт химии еще в школе, вы могли бы вспомнить концепцию ионов - атомов, которые приобрели или потеряли электроны, чтобы сформировать положительно или отрицательно заряженные ионы.Например, натрий (Na) может потерять электрон с образованием ионов натрия (Na + ). Они имеют степень окисления +1, такую ​​же, как заряд иона. Точно так же железо (Fe) может потерять два электрона с образованием иона Fe 2+ или потерять три электрона с образованием иона Fe 3+ . Они имеют степень окисления +2 и +3 соответственно. С ионом хлора (атом хлора, получивший один электрон, Cl - ) степень окисления будет -1.

Состояние окисления 0 наблюдается для всех элементов - это просто элемент в его элементарной форме.Как видно из таблицы, наличие других степеней окисления варьируется, но следует некоторым закономерностям. Общие степени окисления всех металлов в периодической таблице все положительны. С другой стороны, все неметаллы в таблице имеют по крайней мере одну общую отрицательную степень окисления. Металлы d-блока, показанные в таблице желтым цветом, имеют самый широкий диапазон степеней окисления.

Атомы одного и того же элемента с разными степенями окисления могут иметь разные свойства. Самый очевидный из них с внешней точки зрения - это цвет, умело иллюстрированный элементами блока d.Большинство из них имеют несколько общих степеней окисления, и они различаются по цвету. Происхождение этих разных цветов объясняется в предыдущем посте на сайте.

Это был самый короткий вводный курс по степени окисления, но, надеюсь, этого достаточно, чтобы хотя бы частично прояснить приведенный выше рисунок для нехимиков. Конечно, есть место для будущей публикации, в которой более подробно описаны состояния окисления и способы их определения! А пока вы можете загрузить в формате PDF этот рисунок ниже или приобрести его в качестве плаката здесь.

Понравились этот пост и рисунок? Подумайте о поддержке сложного процента на Patreon и получайте предварительные просмотры будущих публикаций и многое другое!

Изображение в этой статье находится под лицензией Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. См. Рекомендации по использованию содержания сайта.

Ссылки и дополнительная литература

.

Как определить степень окисления элементов в соединении

[Депонировать фотографии]

В увлекательной науке химии есть понятие степени окисления, которое является числом для формулировки окислительно-восстановительных реакций.

Чтобы быть кратким, в этой науке степень окисления означает условный заряд в атоме, который теряет или приобретает электроны, и эта цифра представляет собой метод расчета переноса электронов.Это число присваивается одному атому или группе атомов, и характеризует количество перераспределенных электронов, а также показывает принцип переноса электронов в результате определенной химической реакции.

[Депонировать фотографии]

Определить степень окисления одновременно легко и сложно - это зависит от атомов и молекул, которые их составляют.Часто бывает, что атомы некоторых химических элементов могут иметь совершенно разную степень окисления.

Чтобы упростить процесс определения степени окисления, используются специальные простые правила, и любой, кто знает основы химии и математики, сможет без труда найти определенную степень окисления с их помощью. Мы всегда должны помнить, что часто степень окисления и валентность элемента равны друг другу.

Эта научная тема широко изучается в школе, поэтому, чтобы понять, как определить степень окисления, мы предлагаем вам прочитать эту статью.

Первый этап: определяем, является ли химическое вещество элементарным.

Степень окисления атомов, которые никак не взаимодействуют с другими атомами в результате химических процессов, равна нулю.

Этот принцип применяется к группе веществ, состоящей из отдельных свободных атомов.Это правило также применяется к химическим элементам, которые состоят из двухатомных или многоатомных молекул только одного элемента.

[Депонировать фотографии]

Например, железо Fe и кальций Ca имеют степень окисления ноль, потому что они состоят из одного элемента, который не связан химически с другими, как и многоатомные молекулы с одним и тем же типом атома, например, для озона O степень окисления также будет 0.

Расчет степени окисления в ионных соединениях

Степень окисления идентична заряду атомов или группы атомов. Этот принцип применим как для свободных ионов, так и для тех, которые входят в структуру химических соединений.

Например, степень окисления иона хлора равна -1, и если мы исследуем хлор в химическом соединении, например в соляной кислоте HCl, степень окисления этого элемента также будет -1.Так как ион водорода имеет степень окисления +1, заряд иона хлора равен -1, что означает, что его степень окисления равна -1.

[Депонировать фотографии]

Ионы металлов могут иметь много степеней окисления

Мы рассмотрим это на примере железа (Fe), потому что его ион может иметь заряд +2 и +3. Заряд ионов металлических элементов можно определить по заряду других ионов в химическом соединении, и в формулах записи этот заряд обозначается римскими цифрами, например, железо (II) имеет степень окисления +2.Здесь вы найдете потрясающие безопасные эксперименты с железом.

Как определить степень окисления соединения?

Как мы уже установили, соединение должно быть нейтральным. Рассмотрим AlCl₃.

[Викимедиа]

Как мы уже говорили выше, заряд ионов в хлоре равен -1, а в этом соединении есть три атома хлора.Соответственно для компенсации минусов заряд алюминия должен быть +3.

Как определить степень окисления O₂?

Когда кислород находится в свободном состоянии (не вступая в реакцию с какими-либо элементами), степень окисления равна нулю (фактически, как и другие элементарные элементы).

Если кислород входит в состав любого гидроксида, например гидроксида водорода h3O2, он будет иметь степень окисления -1.

Если кислород взаимодействует с фтором (F), он будет иметь степень окисления +2.

Рассмотрим степень окисления водорода H

Этот химический элемент имеет степень окисления +1 (кроме молекулярного состояния водорода), но в исключительных случаях.

via GIPHY

Например, в воде H2O степень окисления водорода будет +1, потому что степень окисления кислорода равна -2, и поэтому все соединение, согласно правилам, имеет нейтральный заряд.

Но если мы возьмем NaH, степень окисления H будет -1, так как у натрия заряд +1.

Как определить степень окисления фтора (F)

Хотя степень окисления химических элементов зависит в большинстве случаев от множества факторов, фтор всегда будет иметь степень окисления -1. Это связано с тем, что фтор имеет низкую электрическую отрицательность, то есть атомы F неохотно вырываются из собственных электронов, но интенсивно притягивают электроны других элементов.

Правило: сумма степеней окисления равна заряду химического элемента.

Сумма степеней окисления всех атомов соединения должна быть нейтральной. С помощью этого правила мы можем проверить, ошиблись ли мы при решении химической задачи.

Как определить степень окисления? Вот несколько полезных советов, которые помогут в решении проблем:

Таблица Менделеева пригодится, чтобы сделать расчет точным. Вы должны научиться правильно им пользоваться и различать, где находятся металлы и неметаллы.

Чтобы найти степень окисления металлов, которая часто имеет несколько соответствующих значений, вы должны определить их степенью окисления других атомов в соединении.

Если вы сложите все величины окисления атомов в химической связи, вы всегда получите нулевую степень окисления.

Наивысшая степень окисления элемента определяется с помощью таблицы Менделеева по группе, в которой он находится.

Металлы во всех соединениях имеют положительную степень окисления.

В соединениях с неметаллами водород имеет степень окисления +1, а степень окисления металлов - -1.

В соединениях кислород имеет степень окисления -2, за исключением H₂O₂, OF₂, K₂O₂.

[Депонировать фотографии]

Степени окисления неметаллов при соединении с атомами металлов всегда будут отрицательными, но при взаимодействии с атомами неметаллов они могут иметь положительную или отрицательную степень окисления.

Чтобы найти наивысшую степень окисления неметаллов, из числа 8 вычтите номер группы, в которой находится элемент, и наивысшая степень окисления со знаком плюс будет равна количеству электронов на внешнем слое. . Чтобы узнать количество электронов во внешнем слое, посмотрите на номер группы в периодической таблице.

.

Смотрите также