Окисление ацетона перманганатом калия в кислой среде


Химические свойства альдегидов и кетонов

Карбонильные соединения – это органические вещества, молекулы которых содержат карбонильную группу:

Карбонильные соединения делятся на альдегиды и кетоны. Общая формула карбонильных соединений: СnH2nO.

Строение, изомерия и гомологический ряд альдегидов и кетонов

Химические свойства альдегидов и кетонов

Способы получения альдегидов и кетонов

 

Альдегидами называются органические соединения, содержащие карбонильную группу, в которой атом углерода связан с радикалом и одним атомом водорода. 

Структурная формула альдегидов:

Кетонами называются соединения, в молекуле которых карбонильная группа связана с двумя углеводородными радикалами

Структурная формула кетонов:

 

1. Реакции присоединения

В молекулах карбонильных соединений присутствует двойная связь С=О, поэтому для карбонильных соединений характерны реакции присоединения по двойной связи. Присоединение к альдегидам протекает легче, чем к кетонам.

1.1. Гидрирование

Альдегиды при взаимодействии с водородом в присутствии катализатора (например, металлического никеля) образуют первичные спирты, кетоны — вторичные:

1.2. Присоединение воды

При гидратации формальдегида образуется малоустойчивое вещество, называемое гидрат. Оно существует только при низкой температуре.

1.3. Присоединение спиртов

При присоединении спиртов к альдегидам образуются вещества, которые называются полуацетали.

В качестве катализаторов процесса используют кислоты или основания.

Полуацетали существует только при низкой температуре.

Полуацеталиэто соединения, в которых атом углерода связан с гидроксильной и алкоксильной (-OR) группами.

Полуацеталь может взаимодействовать с еще одной молекулой спирта в присутствии кислоты. При этом происходит замещение полуацетального гидроксила на алкоксильную группу OR’ и образованию ацеталя:

 

1.4. Присоединение циановодородной (синильной) кислоты

Карбонильные соединения присоединяют синильную кислоту HCN. При этом образуется гидроксинитрил (циангидрин):

 

2. Окисление альдегидов и кетонов

Реакции окисления в органической химии сопровождаются увеличением числа атомов кислорода (или числа связей с атомами кислорода) в молекуле и/или уменьшением числа атомов водорода (или числа связей с атомами водорода).

В зависимости от интенсивности и условий окисление можно условно разделить на каталитическое, мягкое и жесткое.

При окислении альдегиды превращаются в карбоновые кислоты.

Альдегид → карбоновая кислота

 

Метаналь окисляется сначала в муравьиную кислоту, затем в углекислый газ:

Формальдегид→ муравьиная кислота→ углекислый газ

 

Вторичные спирты окисляются в кетоны:

вторичные спирты → кетоны

Типичные окислители — гидроксид меди (II), перманганат калия KMnO4, K2Cr2O7, аммиачный раствор оксида серебра (I).

Кетоны окисляются только при действии сильных окислителей и нагревании.

 

2.1. Окисление гидроксидом меди (II)

Происходит при нагревании альдегидов со свежеосажденным гидроксидом меди, при этом образуется красно-кирпичный осадок оксида меди (I) Cu2O. Это — одна из качественных реакций на альдегиды.

Видеоопыт окисления муравьиного альдегида гидроксидом меди (II) можно посмотреть здесь.

Например, муравьиный альдегид окисляется гидроксидом меди (II)

HCHO + Cu(OH)2 = Cu + HCOOH + H2O

Чаще в этой реакции образуется оксид меди (I):

HCHO + 2Cu(OH)2 = Cu2O + HCOOH + 2H2O

 

2.2. Окисление аммиачным раствором оксида серебра

Альдегиды окисляются аммиачным раствором оксида серебра (реакция «серебряного зеркала»).

Поскольку раствор содержит избыток аммиака, продуктом окисления альдегида будет соль аммония карбоновой кислоты.

Например, при окислении муравьиного альдегида аммиачным раствором оксида серебра (I) образуется карбонат аммония

Например, при окислении уксусного альдегида аммиачным раствором оксида серебра образуется ацетат аммония

 

Образование осадка серебра при взаимодействии с аммиачным раствором оксида серебра — качественная реакция на альдегиды. 

Упрощенный вариант реакции: 

2.3. Жесткое окисление

При окислении под действием перманганатов или соединений хрома (VI) альдегиды окисляются до карбоновых кислот или до солей карбоновых кислот (в нейтральной среде). Муравьиный альдегид окисляется до углекислого газа или до солей угольной кислоты (в нейтральной среде).

Например, при окислении уксусного альдегида перманганатом калия в серной кислоте образуется уксусная кислота

Кетоны окисляются только в очень жестких условиях (в кислой среде при высокой температуре) под действием сильных окислителей: перманганатов или дихроматов.

Реакция протекает с  разрывом С–С-связей (соседних с карбонильной группой) и с образованием смеси карбоновых кислот с меньшей молекулярной массой или СО2.

Карбонильное соединение/ Окислитель KMnO4, кислая среда KMnO4, H2O, t
Метаналь СН2О CO2 K2CO3
Альдегид R-СНО R-COOH R-COOK
Кетон R-COOH/ СО2 R-COOK/ K2СО3

 

 

2.4. Горение карбонильных соединений

При горении карбонильных соединений образуются углекислый газ и вода и выделяется большое количество теплоты.

CnH2nО + 3n/2O2 → nCO2 + nH2O + Q

Например, уравнение сгорания метаналя:

CH2O + O2 = CO2 + H2O

 

3. Замещение водорода у атома углерода, соседнего с карбонильной группой 

Карбонильные соединения вступают в реакцию с галогенами, в результате которой получается хлорзамещенный (у ближайшего к карбонильной группе атома углерода) альдегид или кетон.

Например, при хлорировании уксусного альдегида образуется хлорпроизводное этаналя

Полученное из ацетальдегида вещество называется хлораль. Продукт присоединения воды к хлоралю (хлоральгидрат) устойчив и используется как лекарство.

 

4. Конденсация с фенолами 

Формальдегид может взаимодействовать с фенолом. Катализатором процесса выступают кислоты или основания:

 

Дальнейшее взаимодействие с другими молекулами формальдегида и фенола приводит к образованию фенолоформальдегидных смол и воды:

Фенол и формальдегид вступают в реакцию поликонденсации.

Поликонденсация — это процесс соединения молекул в длинную цепь (полимер) с образованием побочных продуктов с низкой молекулярной массой (вода или др.). 

5. Полимеризация альдегидов 

Полимеризация характерна в основном для легких альдегидов. Для альдегидов характерна линейная и циклическая полимеризация.

Например, в растворе формалина (40 %-ного водного раствора формальдегида) образуется белый осадок полимера формальдегида, который называется полиформальдегид или параформ:

Окисление алкенов манганатом калия

Двойные связи углерод-углерод в алкенах, таких как этен, реагируют с раствором манганата калия (VII) (раствор перманганата калия).

Окисление алкенов холодным разбавленным раствором манганата (VII) калия

Алкены реагируют с раствором манганата (VII) калия на холоде. Изменение цвета зависит от того, используется ли манганат калия (VII) в кислых или щелочных условиях.

  • Если раствор манганата (VII) калия подкисить разбавленной серной кислотой, фиолетовый раствор станет бесцветным.
  • Если раствор манганата калия (VII) сделать слабощелочным (часто путем добавления раствора карбоната натрия), пурпурный раствор сначала становится темно-зеленым, а затем образует темно-коричневый осадок.

Химия реакции

Посмотрим на реакцию с этеном. Точно так же реагируют и другие алкены. Ионы манганата (VII) являются сильным окислителем и в первую очередь окисляют этен до этан-1,2-диола (старое название: этиленгликоль). Рассматривая уравнение исключительно с точки зрения органической реакции:

Уравнения этого типа довольно часто используются в органической химии.Кислород, написанный в квадратных скобках, означает «кислород окислителя». Причина этого в том, что более нормальное уравнение имеет тенденцию скрывать органические изменения массой других деталей - как вы увидите ниже!

Полное уравнение зависит от условий.

  • В кислых условиях ионы манганата (VII) восстанавливаются до ионов марганца (II).

  • В щелочных условиях ионы манганата (VII) сначала восстанавливаются до ионов зеленого манганата (VI).. .

. . . а затем к темно-коричневому твердому оксиду марганца (IV) (диоксид марганца).

Эту последнюю реакцию вы также получили бы, если бы реакцию проводили в нейтральных условиях. Вы заметите, что в левой части уравнения нет ни ионов водорода, ни ионов гидроксида.

Возможно, вы помните, что дальше на странице говорится, что манганат калия (VII) часто слегка подщелачивают, добавляя раствор карбоната натрия.- \]

Именно присутствие этих гидроксид-ионов придает раствору карбоната натрия pH в диапазоне 10-11.

Использование реакции для проверки двойных связей углерод-углерод

Если органическое соединение реагирует с разбавленным щелочным раствором манганата калия (VII) на холоде с образованием зеленого раствора с последующим темно-коричневым осадком, то оно может содержать двойную связь углерод-углерод. Но в равной степени это может быть любое из большого числа других соединений, все из которых могут окисляться ионами манганата (VII) в щелочных условиях.

Ситуация с подкисленным раствором манганата (VII) калия еще хуже, поскольку он имеет тенденцию к разрыву углерод-углеродных связей. Он разрушительно реагирует с большим количеством органических соединений и редко используется в органической химии.

Вы могли бы использовать щелочной раствор манганата калия (VII), если, например, все, что вам нужно было сделать, это выяснить, является ли углеводород алканом или алкеном - другими словами, если нет ничего другого, что можно было бы окислить.Это бесполезный тест. Бромная вода гораздо более понятна.

Окисление алкенов горячим концентрированным подкисленным раствором манганата (VII) калия

Диолы, такие как этан-1,2-диол, которые являются продуктами реакции с холодным разбавленным манганатом калия (VII), сами по себе довольно легко окисляются ионами манганата (VII). Это означает, что в этой точке реакция не остановится на p, если раствор манганата (VII) калия не будет очень разбавленным, очень холодным и предпочтительно не в кислых условиях.Если вы используете горячий концентрированный раствор подкисленного манганата калия (VII), то, что вы в конечном итоге получите, зависит от расположения групп вокруг двойной связи углерод-углерод.

Приведенная ниже формула представляет собой общий алкен. В органической химии символ R используется для обозначения углеводородных групп или водорода в формуле, когда вы не хотите говорить о конкретных соединениях. Если вы используете символ более одного раза в формуле (как здесь), различные группы записываются как R 1 , R 2 и т. Д.

В данном конкретном случае двойная связь окружена четырьмя такими группами, и они могут быть любой комбинацией одинаковых или разных - так что они могут быть 2 атомами водорода, метилом и этилом, или 1 атомом водорода и 3 метилами, или 1 атомом водорода. и 1 метил, 1 этил и 1 пропил, или любую другую комбинацию, о которой вы можете подумать. Другими словами, эта формула представляет все возможные простые алкены:

Первая ступень расширенного окисления

Подкисленный раствор манганата калия (VII) окисляет алкен, разрывая двойную связь углерод-углерод и заменяя ее двумя двойными связями углерод-кислород.

Эти продукты известны как карбонильные соединения , потому что они содержат карбонильную группу C = O. Карбонильные соединения также могут реагировать с манганатом калия (VII), но то, как они реагируют, зависит от того, что присоединено к двойной связи углерод-кислород. Поэтому нам нужно проработать все возможные комбинации.

Если обе присоединенные группы R в продуктах являются алкильными группами

Карбонильные соединения, которые имеют две углеводородные группы, присоединенные к карбонильной группе, называются кетонами.Кетоны не так просто окислить, поэтому дальнейших действий нет. (Но см. Примечание, выделенное красным ниже.) Если бы группы, присоединенные по обе стороны от исходной двойной углерод-углеродной связи, были одинаковыми, то в итоге вы получили бы единственный кетон. Если бы они были разными, вы бы получили смесь двух. Например:

В этом случае вы получите две идентичные молекулы, называемые пропаноном. С другой стороны, если одну из метильных групп в исходной молекуле заменить на этильную группу, вы получите смесь двух разных кетонов - пропанона и бутанона.

Что бы вы получили, если бы по обе стороны от исходной двойной связи углерод-углерод были метильная и этильная группы? Опять же, вы получите единственный кетон - в данном случае бутанон. Если вы не уверены в этом, нарисуйте конструкции и посмотрите.

Этот последний раздел является чрезмерным упрощением. На практике в этих условиях кетоны окисляются раствором манганата калия (VII). Реакция протекает неаккуратно и приводит к разрыву углерод-углеродных связей по обе стороны от карбонильной группы.Манганат калия (VII) - настолько разрушительный окислитель, что его редко используют в органической химии.

Если продукт содержит одну углеводородную группу и один водород

Например, предположим, что первая стадия реакции была:

В этом случае первая молекула продукта имеет метильную группу и водород, присоединенный к карбонильной группе. Это другой вид соединения, известный как альдегид. Альдегиды легко окисляются с образованием карбоновых кислот, содержащих группу -COOH.Итак, на этот раз реакция пойдет на следующую стадию, чтобы получить этановую кислоту, CH 3 COOH.

Структура кислоты была немного изменена, чтобы она больше походила на то, как мы обычно извлекаем кислоты, но в итоге кислород оказался между углеродом и водородом. Таким образом, общий эффект манганата калия (VII) на этот вид алкена составляет:

Очевидно, если бы к обоим атомам углерода на концах двойной углерод-углеродной связи был присоединен атом водорода, вы бы получили две молекулы карбоновой кислоты, которые могли бы быть одинаковыми или разными, в зависимости от того, были ли одинаковые алкильные группы. или другое.

Поиграйте с этим, пока не будете довольны. Нарисуйте несколько алкенов, каждый из которых имеет водород, присоединенный к обоим концам двойной углерод-углеродной связи. Меняйте алкильные группы - иногда одинаковые на каждом конце двойной связи, иногда разные. окислите их, чтобы образовались кислоты, и посмотрите, что у вас получится.

Если продукт содержит два атома водорода, но не содержит углеводородной группы

Вы, возможно, ожидали, что это приведет к образованию метановой кислоты, как в уравнении:

Но это не так! Это потому, что метановая кислота также легко окисляется раствором манганата калия (VII).Фактически, он полностью окисляет его до двуокиси углерода и воды. Таким образом, уравнение в таком случае может быть, например:

Точная природа другого продукта (в данном примере пропанона) будет варьироваться в зависимости от того, что было присоединено к правому атому углерода в двойной связи углерод-углерод. Если бы на обоих концах двойной связи было два атома водорода (другими словами, если бы у вас был этен), то все, что вы получили бы, - это углекислый газ и вода.

Пример

Работа с результатами поможет вам определить структуру алкена.Например, алкен C 4 H 8 имеет три структурных изомера:

Определите, какие из них дали бы каждый из следующих результатов, если бы их обрабатывали горячим концентрированным раствором манганата (VII) калия.

  • Изомер А дает кетон (пропанон) и диоксид углерода.
  • Изомер B дает карбоновую кислоту (пропановую кислоту) и диоксид углерода.
  • Изомер C дает карбоновую кислоту (этановую кислоту).

РЕШЕНИЕ

Кислоты образуются, когда атом водорода присоединен хотя бы к одному из атомов углерода в двойной связи углерод-углерод.Поскольку в C имеется только один продукт, алкен должен быть симметричным относительно двойной связи. Это бут-2-ен. Если у вас есть два атома водорода на одном конце связи, это приведет к образованию двуокиси углерода. A - это 2-метилпропен, потому что другая молекула - кетон. B должен быть бут-1-еном, потому что он производит диоксид углерода и кислоту.

.

алкенов и манганат калия (VII) (перманганат)

Если продукт имеет одну углеводородную группу и один водород

Например, предположим, что первая стадия реакции была:

В этом случае первая молекула продукта имеет метильную группу и водород, присоединенный к карбонильная группа. Это другой вид соединения, известный как альдегид.

Альдегиды легко окисляются с образованием карбоновых кислот, содержащих группу -COOH.Таким образом, на этот раз реакция пойдет на следующую стадию с получением этановой кислоты, CH 3 COOH.

Структура кислоты была немного изменена, чтобы она больше походила на то, как мы обычно извлекаем кислоты, но в итоге кислород оказался между углеродом и водородом.

Таким образом, общий эффект манганата калия (VII) на этот вид алкена составляет:

Очевидно, если бы к обоим атомам углерода на концах двойной углерод-углеродной связи был присоединен атом водорода, вы бы получили две молекулы карбоновой кислоты, которые могли бы быть одинаковыми или разными, в зависимости от того, были ли одинаковые алкильные группы. или другое.

Поиграйте с этим, пока не будете довольны. Нарисуйте несколько алкенов, каждый из которых имеет водород, присоединенный к обоим концам двойной углерод-углеродной связи. Меняйте алкильные группы - иногда одинаковые на каждом конце двойной связи, иногда разные. Окислите их, чтобы образовались кислоты, и посмотрите, что у вас получится.

Если продукт содержит два атома водорода, но не содержит углеводородной группы

Можно было ожидать, что при этом будет образована метановая кислота, как в уравнении:

Но это не так! Это потому, что метановая кислота также легко окисляется раствором манганата калия (VII).Фактически, он полностью окисляет его до двуокиси углерода и воды.

Таким образом, уравнение в таком случае могло бы быть, например:

Точная природа другого продукта (в данном примере пропанона) будет варьироваться в зависимости от того, что было присоединено к правому атому углерода в двойной связи углерод-углерод.

Если бы на обоих концах двойной связи было по два атома водорода (другими словами, если бы у вас был этен), то все, что вы получили бы, - это диоксид углерода и вода.

 

Сводка

Подумайте о обоих концах двойной связи углерод-углерод по отдельности, а затем объедините результаты.

  • Если на одном конце связи есть две алкильные группы, эта часть молекулы даст кетон.

  • Если есть одна алкильная группа и один водород на одном конце связи, эта часть молекулы даст карбоновую кислоту.

  • Если на одном конце связи есть два атома водорода, эта часть молекулы даст диоксид углерода и воду.

 

В чем смысл всего этого?

Работа с результатами поможет вам определить структуру алкена. Например, алкен C 4 H 8 имеет три структурных изомера:

Определите, какие из них дали бы каждый из следующих результатов, если бы их обрабатывали горячим концентрированным раствором манганата (VII) калия. Вышеуказанные изомеры: , а не в порядке A, B и C.

Не читайте ответы в зеленой рамке, пока не попробуете это.

  • Изомер A дает кетон (пропанон) и диоксид углерода.

  • Изомер B дает карбоновую кислоту (пропановую кислоту) и диоксид углерода.

  • Изомер C дает карбоновую кислоту (этановую кислоту).

.

Перманганат калия (Kmno4) | Применение, физические и химические свойства перманганата калия

Что такое перманганат калия?

  • Перманганат калия - это универсальное химическое соединение пурпурного цвета.

  • Это калиевая соль марганцевой кислоты.

  • Также известный как перманганат калия, он имеет много других названий, таких как минерал хамелеон, кристаллы Конди и гипермаган.

  • Перманганат калия был впервые произведен немецким химиком Иоганном Рудольфом Глаубером в 1659 году, но вскоре о нем забыли.Он был заново открыт британским химиком Генри Конди, который производил дезинфицирующие средства, известные как «кристаллы Конди». Перманганат калия имел большой успех.

  • Обладает окислительными свойствами, поэтому нашло разнообразное применение в медицинской и химической промышленности.

  • Его химическая формула - KMnO4.

Физические свойства перманганата калия - KMnO4

  • Это химическое соединение ярко-фиолетового или бронзового цвета.

  • Имеет плотность 2.7 г / мл, а его молярная масса составляет 158,034 г / моль.

  • Состав не имеет запаха, то есть не имеет запаха, но имеет сладкий вкус.

  • Он имеет высокую температуру плавления 2400 C.

  • Он в основном встречается в виде порошка, кристаллов или таблеток.

Химические свойства перманганата калия

  • Перманганат калия растворим в ацетоне, воде, пиридине, метаноле и уксусной кислоте.Он также легко растворяется в неорганических растворителях.

  • Имеет насыщенный фиолетовый цвет в концентрированном растворе и розовый цвет в разбавленном растворе.

Концентрированные и разбавленные растворы перманганата калия

  • Не горючий, но поддерживает горение других веществ.

  • В нормальных условиях это очень стабильное соединение, но при нагревании разлагается с образованием MnO2 и высвобождением кислорода.

2KMnO4 ∆ → K2MnO4 + MnO2 + O2

  • Это сильный окислитель (соединение, которое может легко переносить свой кислород на другие вещества), образуя темно-коричневый диоксид марганца (MnO2), который окрашивает все, что есть органический.Он легко может принимать электроны от других веществ.

  • Он бурно реагирует с серной кислотой, приводя к взрыву.

  • Он немедленно вступает в реакцию с глицерином и простыми спиртами с образованием пламени и дыма.

Структура перманганата калия - KMnO4

  • Перманганат калия представляет собой ионное соединение, состоящее из катиона калия (K +) и перманганат-аниона (MnO4-).

  • В перманганат-анионе (MnO4-) атом марганца связан с четырьмя атомами кислорода тремя двойными связями и одной одинарной связью.Его структуру можно записать следующим образом.

  • Степень окисления марганца в этой соли +7.

  • Кристаллическая структура твердого KMnO4 орторомбическая. Каждая структура MnO4- присутствует в тетраэдрической геометрии.

Реакции перманганата калия (KMnO4)

Большинство реакций с перманганатом калия представляют собой окислительно-восстановительные реакции (химическая реакция, при которой одно вещество окисляется, а другое восстанавливается).

KMnO4 может окислять многие неорганические соединения.Среда раствора играет важную роль в определении продуктов реакции.

2KMnO4 + 5Na2SO3 + 3h3SO4🡪 2MnSO4 + 5Na2SO₄ + K2SO4 + 3h3O

2KMnO4 + 3K2SO3 + h3O 🡪 3K2SO4 + 2MnO2 + 2KOH

+ 3K2SO4 + 2MnO2 + 2KOH

+ Na2SO4 + выделение кислорода 2KMNO4 ,

2KMnO4 ∆ → K2MnO4 + MnO2 + O2

При разбавлении кристаллов перманганата в присутствии прямых солнечных лучей выделяется кислород.

4KMnO4 + 2h3O Солнечный свет → 4KOH + 4MnO2 + 3O2

.

Кинетика и механическое исследование перманганатного окисления гидразона флуоренона в щелочной среде

Кинетику окисления гидразона флуоренона (FH) с использованием перманганата калия в щелочной среде измеряли при постоянной ионной силе 0,1 моль дм -3 и при 25 °. C с использованием спектрофотометра UV / VIS. Кинетика первого порядка наблюдалась в реакции FH по отношению к [перманганату]. Выявлена ​​зависимость реакции от [FH] и [OH - ] менее единицы порядка.Явного влияния увеличения ионной силы на скорость реакции не зафиксировано. В реакции наблюдалось вмешательство свободных радикалов. Был проиллюстрирован механизм реакции, описывающий кинетические результаты, который включает образование 1: 1 промежуточного комплекса между гидразонами флуоренона и активными частицами перманганата. Было обнаружено, что 9H-флуоренон в качестве соответствующего кетона является конечным продуктом окисления гидразона флуоренона, что подтверждается анализом GC / MS и FT-IR спектроскопией.Выведен закон скорости выражения для реакции окисления. Оценены константы и механизм реакции. Параметры активации, связанные с лимитирующей стадией реакции, наряду с термодинамическими величинами констант равновесия, были рассчитаны и обсуждены.

1. Введение

Флуорен и его производные (ФУ) представляют собой уникальный класс полициклических ароматических углеводородов (ПАУ), которые присутствуют в ископаемом топливе и петрогенных источниках сжигания бензина [1, 2].Недавно исследования выбросов выхлопных газов различных типов дизельного топлива с измененной формулой показали присутствие флуорена в качестве соединения, имеющего приоритетное значение, и изомеров метилфлуорена в качестве нерешенного соединения в выхлопных газах [3]. Флуореновый блок постоянно используется при росте ассортимента зрительных устройств со скрытым применением в виде сенсибилизированных красителями солнечных элементов [4], полимерных светодиодов [5, 6] и других электроэмиссионных материалов [7]. Кроме того, системы на основе флуорена обладают единственными фотофизическими свойствами, такими как высокий квантовый выход флуоресценции, огромная фотостабильность и прекрасные свойства переноса дырок [8, 9].Кроме того, флуорен является одним из самых распространенных полициклических ароматических углеводородов (ПАУ) в окружающей среде из-за его высокой летучести. Было установлено, что он является нейротоксикантом через глоток воздуха, а также был признан ПАУ, способствующим заражению через пищу. Флуореновые соединения с внутренней жесткой структурой привлекают большое внимание как органические функциональные материалы из-за их многообещающих физических и химических свойств, таких как температура стеклования, хорошая растворимость и их аморфная природа, что делает их очень многообещающими в качестве перехода к оптическим электрическим материалам [ 10, 11].Кроме того, было обнаружено, что производные гидразона являются биологически важным классом соединений [12]. Производные гидразона обнаружены в природных и синтетических продуктах, представляющих биологический интерес [13]. Литературные исследования показали, что гидразоны и различные замещенные производные проявляют широкий спектр биологической активности. Кроме того, гидразоны флуоренона используются в качестве предшественников для синтеза фотохромных ди- и тетрагидроиндолизинов [14–16], а в последнее время в качестве эффективных ингибиторов коррозии [17].

Перманганат калия широко используется в качестве окислителя для множества органических молекул в различных средах [18–24]. Механизмы реакции окисления перманганатом регулируются pH среды [25]. Среди шести степеней окисления от Mn (II) до Mn (VII) перманганат, Mn (VII), оказывается наиболее сильным состоянием окисления как в кислой, так и в щелочной среде. При использовании перманганата в качестве окислителя понятно, что Mn (VII) в перманганате восстанавливается до различных степеней окисления в кислой, щелочной и нейтральной средах.

Насколько нам известно, нет сообщений о кинетике и механизме окисления гидразона флуоренона. Это мотивирует нас исследовать кинетику и механизм окисления гидразона флуоренона перманганат-ионом в щелочной среде. Цели настоящего исследования заключались в том, чтобы пролить больше света и установить наиболее благоприятные условия, влияющие на окисление такого примечательного соединения, а также выяснить вероятный механизм реакции окисления.

2. Экспериментальная
2.1. Материалы

В данной работе использовались химикаты марок Aldrich. Флуоренон гидразон получали по описанной методике с некоторыми модификациями [26, 27]. Синтезированный гидразон флуоренона подтвержден как спектроскопическими, так и аналитическими методами. Все использованные растворители были спектроскопической чистоты и использовались без дополнительной очистки. Используемые растворители проверяли на отсутствие поглощающих или флуоресцентных примесей. Свежий раствор перманганата калия готовили и стандартизировали, как описано [28].Гидроксид натрия и перхлорат натрия использовали для изменения щелочности и ионной силы реакционной среды соответственно.

2.2. Кинетические измерения

Кинетические измерения проводились в условиях псевдопервого порядка, когда субстрат гидразона флуоренона (сокращенно FH) присутствовал в большом избытке по сравнению с перманганатом. Реакцию инициировали смешиванием ранее термостатированных растворов перманганата и субстрата, которые также содержали необходимые количества NaOH и NaClO 4 .За ходом реакции следили не менее чем до двух периодов полураспада путем мониторинга абсорбции перманганата как функции времени в максимуме абсорбции ( λ = 525 нм), в то время как другие составляющие реакционной смеси не наблюдались. значительно поглощается на определенной длине волны. Температуры плавления производных флуоренона регистрировали с использованием прибора для определения точки плавления Gallenkamp. ЯМР регистрировали на Bruker Avance 400 МГц с CDCl 3 и CDCl 3 в качестве растворителя с тетраметилсиланом (ТМС) в качестве внутреннего стандарта.Химические сдвиги связаны с химическими сдвигами растворителя. ГХ-масс-спектры записывали на масс-спектрометре Shimadzu GCMS-QP1000 EX при 70 эВ. Измерения поглощения проводились на двухлучевом спектрофотометре Shimadzu UV-VIS-NIR-3600 с регулируемой температурой. Температуру реакции поддерживали на уровне ± 0,1 ° C.

Графики первого порядка в зависимости от времени были записаны как прямые линии до не менее 80% завершения реакции и наблюдаемых констант скорости первого порядка (

.

Смотрите также