Окисление перманганатом калия этанола


Химические свойства спиртов | CHEMEGE.RU

Гидроксисоединения – это органические вещества, молекулы которых содержат, помимо углеводородной цепи, одну или несколько гидроксильных групп ОН.

Гидроксисоединения делят на спирты и фенолы.

Строение, изомерия и гомологический ряд спиртов

Химические свойства спиртов

Способы получения спиртов

 

Спиртыэто гидроксисоединения, в которых группа ОН соединена с алифатическим углеводородным радикалом R-OH.

Если гидроксогруппа ОН соединена с бензольным кольцом, то вещество относится к фенолам.

 

Общая формула предельных нециклических спиртов: CnH2n+2Om, где mn.

 

 

Спирты – органические вещества, молекулы которых содержат, помимо углеводородной цепи, одну или несколько гидроксильных групп ОН.

Химические реакции гидроксисоединений идут с разрывом одной из связей: либо С–ОН с отщеплением группы ОН, либо связи О–Н с отщеплением водорода. Это реакции замещения, либо реакции отщепления (элиминирования).

Свойства спиртов определяются строением связей С–О–Н. Связи С–О и О–Н — ковалентные полярные. При этом на атоме водорода образуется частичный положительный заряд δ+, на атоме углерода также частичный положительный заряд δ+, а на атоме кислорода — частичный отрицательный заряд δ–.

Такие связи разрываются по ионному механизму. Разрыв связи О–Н с отрывом иона Н+ соответствует кислотным свойствам гидроксисоединения. Разрыв связи С–О соответствует основным свойствам и реакциям нуклеофильного замещения.

С разрывом связи О–Н идут реакции окисления, а с разрывом связи С–О — реакции восстановления.

Таким образом, для спиртов характерны следующие свойства:
  • слабые кислотные свойства, замещение водорода на металл;
  • замещение группы ОН
  • отрыв воды (элиминирование) – дегидратация
  • окисление
  • образование сложных эфиров — этерификация


1. Кислотные свойства

 

Спирты – неэлектролиты, в водном растворе не диссоциируют на ионы; кислотные свойства у них выражены слабее, чем у воды.

1.1. Взаимодействие с раствором щелочей

 

При взаимодействии спиртов с  растворами щелочей реакция практически не идет, т. к. образующиеся алкоголяты почти полностью гидролизуются водой.

Равновесие в этой реакции так сильно сдвинуто влево, что прямая реакция не идет. Поэтому спирты не взаимодействуют с растворами щелочей.

Многоатомные спирты также не реагируют с растворами щелочей.

 

1.2. Взаимодействие с металлами (щелочными и щелочноземельными)

Спирты взаимодействуют с активными металлами (щелочными и щелочноземельными). При этом образуются алкоголяты. При взаимодействии с металлами спирты ведут себя, как кислоты.

 

Например, этанол взаимодействует с калием с образованием этилата калия и водорода.

 

 

Видеоопыт взаимодействия спиртов (метанола, этанола и бутанола) с натрием можно посмотреть здесь.

Алкоголяты под действием воды полностью гидролизуются с выделением спирта и гидроксида металла.

 

Например, этилат калия разлагается водой:

 

Кислотные свойства одноатомных спиртов уменьшаются в ряду:

CH3OH > первичные спирты > вторичные спирты > третичные спирты

 

Многоатомные спирты также реагируют с активными металлами:

Видеоопыт взаимодействия глицерина с натрием можно посмотреть здесь.

 

1.3. Взаимодействие с гидроксидом меди (II)

Многоатомные спирты взаимодействуют с раствором гидроксида меди (II) в присутствии щелочи, образуя комплексные соли (качественная реакция на многоатомные спирты).

 

Например, при взаимодействии этиленгликоля со свежеосажденным гидроксидом меди (II) образуется  ярко-синий раствор гликолята меди:

 

Видеоопыт взаимодействия этиленгликоля с гидроксидом меди (II) можно посмотреть здесь.

 

2. Реакции замещения группы ОН

 

2.1. Взаимодействие с галогеноводородами

При взаимодействии спиртов с галогеноводородами группа ОН замещается на галоген и образуется галогеналкан.

 

Например, этанол реагирует с бромоводородом.

 

 

Видеоопыт взаимодействия этилового спирта с бромоводородом можно посмотреть здесь.

 

Реакционная способность одноатомных спиртов в реакциях с галогеноводородами уменьшается в ряду:

третичные > вторичные > первичные > CH3OH.

 

Многоатомные спирты также, как и одноатомные спирты, реагируют с галогеноводородами.

 

Например, этиленгликоль реагирует с бромоводородом:

 

 

2.2. Взаимодействие с аммиаком

 

Гидроксогруппу спиртов можно заместить на аминогруппу при нагревании спирта с аммиаком на катализаторе.

 

Например, при взаимодействии этанола с аммиаком образуется этиламин.

 

 

2.3. Этерификация (образование сложных эфиров)

Одноатомные и многоатомные спирты вступают в реакции с карбоновыми кислотами, образуя сложные эфиры.

 

 

Например, этанол реагирует с уксусной кислотой с образованием этилацетата (этилового эфира уксусной кислоты):

 

 

Многоатомные спирты вступают в реакции этерификации с органическими и неорганическими кислотами.

 

Например, этиленгликоль реагирует с уксусной кислотой с образованием ацетата этиленгликоля:

 

 

2.4. Взаимодействие с кислотами-гидроксидами

Спирты взаимодействуют и с неорганическими кислотами, например, азотной или серной.

 

Например, при взаимодействии этанола с азотной кислотой образуется сложный эфир этилнитрат:

 

Например, глицерин под действием азотной кислоты образует тринитрат глицерина (тринитроглицерин):

 

3. Реакции замещения группы ОН

В присутствии концентрированной серной кислоты от спиртов отщепляется вода. Процесс дегидратации протекает по двум возможным направлениям: внутримолекулярная дегидратация и межмолекулярная дегидратация.

 

3.1. Внутримолекулярная дегидратация

При высокой температуре (больше 140оС) происходит внутримолекулярная дегидратация и образуется соответствующий алкен.

 

Например, из этанола под действием концентрированной серной кислоты при температуре выше 140 градусов образуется этилен:

 

В качестве катализатора этой реакции также используют оксид алюминия.

 

Отщепление воды от несимметричных спиртов проходит в соответствии с правилом Зайцева: водород отщепляется от менее гидрогенизированного атома углерода.

 

Например, в присутствии концентрированной серной кислоты при нагревании выше 140оС из бутанола-2 в основном образуется бутен-2:

 

3.2. Межмолекулярная дегидратация

При низкой температуре (меньше 140оС) происходит межмолекулярная дегидратация по механизму нуклеофильного замещения: ОН-группа в одной молекуле спирта замещается на группу OR другой молекулы. Продуктом реакции является простой эфир.

 

Например, при дегидратации этанола при температуре до 140оС образуется диэтиловый эфир:

 

 

4. Окисление спиртов

Реакции окисления в органической химии сопровождаются увеличением числа атомов кислорода (или числа связей с атомами кислорода) в молекуле и/или уменьшением числа атомов водорода (или числа связей с атомами водорода).

В зависимости от интенсивности и условий окисление можно условно разделить на каталитическое, мягкое и жесткое.

 

При окислении первичных спиртов они последовательно превращаются сначала в альдегиды, а потом в карбоновые кислоты. Глубина окисления зависит от окислителя.

Первичный спирт → альдегид → карбоновая кислота

 

Метанол окисляется сначала в формальдегид, затем в углекислый газ:

Метанол → формальдегид → углекислый газ

 

Вторичные спирты окисляются в кетоны: вторичные спирты → кетоны

Типичные окислители — оксид меди (II), перманганат калия KMnO4, K2Cr2O7, кислород в присутствии катализатора.

Легкость окисления спиртов уменьшается в ряду:

метанол < первичные спирты < вторичные спирты < третичные спирты

Продукты окисления многоатомных спиртов зависят от их строения. При окислении оксидом меди многоатомные спирты образуют карбонильные соединения.

 

4.1. Окисление оксидом меди (II)

Cпирты можно окислить оксидом меди (II) при нагревании. При этом медь восстанавливается до простого вещества. Первичные спирты окисляются до альдегидов, вторичные до кетонов, а метанол окисляется до метаналя.

 

Например, этанол окисляется оксидом меди до уксусного альдегида

 

 

Видеоопыт окисления этанола оксидом меди (II) можно посмотреть здесь.

 

Например, пропанол-2 окисляется оксидом меди (II) при нагревании до ацетона

 

 

Третичные спирты окисляются только в жестких условиях.

 

4.2. Окисление кислородом в присутствии катализатора

Cпирты можно окислить кислородом в присутствии катализатора (медь, оксид хрома (III) и др.). Первичные спирты окисляются до альдегидов, вторичные до кетонов, а метанол окисляется до метаналя.

 

Например, при окислении пропанола-1 образуется пропаналь

 

 

Видеоопыт каталитического окисления этанола кислородом можно посмотреть здесь.

 

Например, пропанол-2 окисляется кислородом при нагревании в присутствии меди до ацетона

 

Третичные спирты окисляются только в жестких условиях.

 

4.3. Жесткое окисление

При жестком окислении под действием перманганатов или соединений хрома (VI) первичные спирты окисляются до карбоновых кислот, вторичные спирты окисляются до кетонов, метанол окисляется до углекислого газа.

 

При нагревании первичного спирта с перманганатом или дихроматом калия в кислой среде может образоваться также альдегид, если его сразу удаляют из реакционной смеси.

 

Третичные спирты окисляются только в жестких условиях (в кислой среде при высокой температуре) под действием сильных окислителей: перманганатов или дихроматов. При этом происходит разрыв углеродной цепи и могут образоваться углекислый газ, карбоновая кислота или кетон, в зависимости от строения спирта.

 

Спирт/ Окислитель KMnO4, кислая среда KMnO4, H2O, t
Метанол СН3-ОН CO2 K2CO3
Первичный спирт  R-СН2-ОН R-COOH/ R-CHO R-COOK/ R-CHO
Вторичный спирт  R1-СНОН-R2 R1-СО-R2 R1-СО-R2

 

Например, при взаимодействии метанола с перманганатом калия в серной кислоте образуется углекислый газ

 

 

Например, при взаимодействии этанола с перманганатом калия в серной кислоте образуется уксусная кислота

 

 

Например, при взаимодействии изопропанола с перманганатом калия в серной кислоте образуется ацетон

 

 

4.4. Горение спиртов

Образуются углекислый газ и вода и выделяется большое количество теплоты.

CnH2n+1ОН + (3n+1)/2O2 → nCO2 + (n+1)H2O + Q

 

Например, уравнение сгорания метанола:

 

2CH3OH + 3O2 = 2CO2 + 4H2O

 

5. Дегидрирование спиртов 

При нагревании спиртов в присутствии медного катализатора протекает реакция дегидрирования. При дегидрировании метанола и первичных спиртов образуются альдегиды, при дегидрировании вторичных спиртов образуются кетоны. 

 

Например, при дегидрировании этанола образуется этаналь

 

 

Например, при дегидрировании этиленгликоля образуется диальдегид (глиоксаль)

 

Каков продукт окисления, когда этанол реагирует с перманганатом калия?

Химия
Наука
  • Анатомия и физиология
  • Астрономия
  • Астрофизика
  • Биология
  • Химия
  • наука о планете Земля
  • Наука об окружающей среде
.

алкенов и манганат калия (VII) (перманганат)

Если продукт имеет одну углеводородную группу и один водород

Например, предположим, что первая стадия реакции была:

В этом случае первая молекула продукта имеет метильную группу и водород, присоединенный к карбонильная группа. Это другой вид соединения, известный как альдегид.

Альдегиды легко окисляются с образованием карбоновых кислот, содержащих группу -COOH.Таким образом, на этот раз реакция пойдет на следующую стадию с получением этановой кислоты, CH 3 COOH.

Структура кислоты была немного изменена, чтобы она больше походила на то, как мы обычно извлекаем кислоты, но в итоге кислород оказался между углеродом и водородом.

Таким образом, общий эффект манганата калия (VII) на этот вид алкена составляет:

Очевидно, если бы к обоим атомам углерода на концах двойной связи углерод-углерод был присоединен атом водорода, вы бы получили две молекулы карбоновой кислоты, которые могли бы быть одинаковыми или разными, в зависимости от того, были ли одинаковые алкильные группы. или другое.

Поиграйте с этим, пока не будете довольны. Нарисуйте несколько алкенов, каждый из которых имеет водород, присоединенный к обоим концам двойной углерод-углеродной связи. Меняйте алкильные группы - иногда одинаковые на каждом конце двойной связи, иногда разные. Окислите их, чтобы образовались кислоты, и посмотрите, что у вас получится.

Если продукт содержит два атома водорода, но не содержит углеводородной группы

Можно было ожидать, что при этом будет образована метановая кислота, как в уравнении:

Но это не так! Это потому, что метановая кислота также легко окисляется раствором манганата калия (VII).Фактически, он полностью окисляет его до двуокиси углерода и воды.

Таким образом, уравнение в таком случае могло бы быть, например:

Точная природа другого продукта (в данном примере пропанона) будет варьироваться в зависимости от того, что было присоединено к правому атому углерода в двойной связи углерод-углерод.

Если бы на обоих концах двойной связи было два атома водорода (другими словами, если бы у вас был этен), то все, что вы получили бы, - это диоксид углерода и вода.

 

Сводка

Подумайте о обоих концах двойной связи углерод-углерод по отдельности, а затем объедините результаты.

  • Если на одном конце связи есть две алкильные группы, эта часть молекулы даст кетон.

  • Если есть одна алкильная группа и один водород на одном конце связи, эта часть молекулы даст карбоновую кислоту.

  • Если на одном конце связи есть два атома водорода, эта часть молекулы даст диоксид углерода и воду.

 

В чем смысл всего этого?

Работа с результатами поможет вам определить структуру алкена. Например, алкен C 4 H 8 имеет три структурных изомера:

Определите, какие из них дали бы каждый из следующих результатов, если бы их обрабатывали горячим концентрированным раствором манганата (VII) калия. Вышеуказанные изомеры: , а не в порядке A, B и C.

Не читайте ответы в зеленой рамке, пока не попробуете это.

  • Изомер A дает кетон (пропанон) и диоксид углерода.

  • Изомер B дает карбоновую кислоту (пропановую кислоту) и диоксид углерода.

  • Изомер C дает карбоновую кислоту (этановую кислоту).

.

Перманганат калия (Kmno4) | Применение, физические и химические свойства перманганата калия

Что такое перманганат калия?

  • Перманганат калия - это универсальное химическое соединение пурпурного цвета.

  • Это калиевая соль марганцевой кислоты.

  • Также известный как перманганат калия, он имеет много других названий, таких как минерал хамелеон, кристаллы Конди и гипермаган.

  • Перманганат калия был впервые произведен немецким химиком Иоганном Рудольфом Глаубером в 1659 году, но вскоре о нем забыли.Он был заново открыт британским химиком Генри Конди, который производил дезинфицирующие средства, известные как «кристаллы Конди». Перманганат калия имел большой успех.

  • Обладает окислительными свойствами, поэтому нашло разнообразное применение в медицинской и химической промышленности.

  • Его химическая формула - KMnO4.

Физические свойства перманганата калия - KMnO4

  • Это химическое соединение ярко-фиолетового или бронзового цвета.

  • Имеет плотность 2.7 г / мл, а его молярная масса составляет 158,034 г / моль.

  • Состав не имеет запаха, то есть не имеет запаха, но имеет сладкий вкус.

  • Он имеет высокую температуру плавления 2400 C.

  • Он в основном встречается в виде порошка, кристаллов или таблеток.

Химические свойства перманганата калия

  • Перманганат калия растворим в ацетоне, воде, пиридине, метаноле и уксусной кислоте.Он также легко растворяется в неорганических растворителях.

  • Имеет насыщенный фиолетовый цвет в концентрированном растворе и розовый цвет в разбавленном растворе.

Концентрированные и разбавленные растворы перманганата калия

  • Не горючий, но поддерживает горение других веществ.

  • В нормальных условиях это очень стабильное соединение, но при нагревании разлагается с образованием MnO2 и высвобождением кислорода.

2KMnO4 ∆ → K2MnO4 + MnO2 + O2

  • Это сильный окислитель (соединение, которое может легко передавать свой кислород другим веществам), образуя темно-коричневый диоксид марганца (MnO2), который окрашивает все, что есть органический.Он легко может принимать электроны от других веществ.

  • Он бурно реагирует с серной кислотой, приводя к взрыву.

  • Он немедленно вступает в реакцию с глицерином и простыми спиртами с образованием пламени и дыма.

Структура перманганата калия - KMnO4

  • Перманганат калия представляет собой ионное соединение, состоящее из катиона калия (K +) и перманганат-аниона (MnO4-).

  • В перманганат-анионе (MnO4-) атом марганца связан с четырьмя атомами кислорода тремя двойными связями и одной одинарной связью.Его структуру можно записать следующим образом.

  • Степень окисления марганца в этой соли +7.

  • Кристаллическая структура твердого KMnO4 орторомбическая. Каждая структура MnO4- присутствует в тетраэдрической геометрии.

Реакции перманганата калия (KMnO4)

Большинство реакций с перманганатом калия представляют собой окислительно-восстановительные реакции (химическая реакция, при которой одно вещество окисляется, а другое восстанавливается).

KMnO4 может окислять многие неорганические соединения.Среда раствора играет важную роль в определении продуктов реакции.

2KMnO4 + 5Na2SO3 + 3h3SO4🡪 2MnSO4 + 5Na2SO₄ + K2SO4 + 3h3O

2KMnO4 + 3K2SO3 + h3O 🡪 3K2SO4 + 2MnO2 + 2KOH

.

Кислотный перманганат калия - Большая химическая энциклопедия

Хлористый водород Уксусный ангидрид, алюминий, 2-аминоэтанол, аммиак, хлорсульфоновая кислота, этилендиамин, фтор, ацетилиды и карбиды металлов, олеум, хлорная кислота, перманганат калия, натрий, серная кислота ... [ Pg.1208]

Силоксен флуоресцирует, а красная хемилюминесценция возникает в результате окисления сульфатом церия, хромовой кислотой, перманганатом калия, азотной кислотой и некоторыми другими сильными окислителями. Спектр хемилюминесценции имеет максимум при 600 нм и, как сообщается (199), дает максимальную яркость 3.43 кд / м (1 футламберт). [Pg.271]

Обычными методами обработки являются подкисление, нейтрализация и сжигание. Когда оксидная кислота слегка нагревается в серной кислоте, она превращается в монооксид углерода, диоксид углерода и воду. Реакция с кислым перманганатом калия превращает его в диоксид углерода. Нейтрализация щелочами, такими как каустическая сода, дает растворимые оксалаты. Нейтрализация известью дает практически нерастворимый оксалат кальция, который можно безопасно утилизировать, например, сжиганием.[Pg.461]

Алканоламины можно окислять различными окислителями. С помощью кислого перманганата калия или избытка гидроксида калия получаются калиевые соли соответствующей аминокислоты ... [Стр.7]

Разделенные полиолы обнаруживаются с помощью различных реагентов, включая аммиачный нитрат серебра (175), концентрированную серную кислоту. , перманганат калия (163), тетраацетат свинца и теуратокупрат калия (176). Смесь метапериодата натрия и перманганата калия может быть использована для обнаружения до 5-8).тг маннита или эритрита (177). [Стр.52]

Пиридазинтионы легко окисляются до соответствующих дисульфидов с помощью йода, водного раствора хлорида железа (III), перекиси водорода в уксусной кислоте, перманганата калия в уксусной кислоте и при длительном пребывании на воздухе. [Стр.37]

Окисление (Раздел 11.13) Окисление алкилбензолов происходит в бензильном положении алкильной группы и дает производное бензойной кислоты. Окисляющие агенты включают дихромат натрия или калия в водной серной кислоте.Перманганат калия (KMn04) также является эффективным окислителем. [Pg.466]

В попытке защитить тиофенолы во время реакций электрофильного замещения в ароматическом кольце были получены три замещенных тиоэфира. После ацетилирования ароматического кольца (с умеренными выходами) защитная группа превращалась в дисульфид с умеренными выходами, 50-60%, путем окисления перекисью водорода / кипящей минеральной кислотой, азотной кислотой или кислым перманганатом калия. ... [Pg.479]

Используйте Приложение 2B, чтобы определить, может ли кислый раствор перманганата калия окислять (а) хлорид-ионы до хлора и (б) металлическую ртуть до ионов ртути (I) при стандартных условиях.[Pg.813]

См. Пентафтиорид брома Водородсодержащие материалы Триоксид хрома Уксусная кислота Пероксид водорода Уксусная кислота Перманганат калия Уксусная кислота Пероксид натрия Уксусная кислота ... [Pg.319]

Растворители Вода (очищенная вода или вода для- для инъекций) толуол, метанол, этанол, эфир, ацетат, диметилсульфоксид, тетрагидрофуран, гексан, циклогексан, дихлорметан, ацетонитрил, ацетон, окисляющие агенты, перекись водорода, хромовая кислота, перманганат калия, диоксид марганца, озон... [Pg.335]

Мокрое окисление Некоторые типы жидкофазных окислителей, такие как азотная кислота, кислый перманганат калия, кислый дихромат калия, перманганат дихромата, пероксид водорода, бикарбонат аммония и персульфат калия, имеют ... [Pg.335] Pg.187]

Обработка полония (IV) азотной кислотой / перманганатом калия при кипячении с обратным холодильником дает осадок диоксида марганца, который содержит весь полоний, изначально присутствовавший, валентность которого не определена. Полоний (IV) в взвешенных количествах не окисляется персульфатом, солями церия или хлором в щелочном растворе (12), хотя следовые шкалы показывают, что как соли церия, так и дихромат действительно окисляют полоний до полония (VI) (94).[Pg.211]

Deltamethrin Wheat TLC, обнаружение распылением серной кислоты и перманганата калия - [138] ... [Pg.237]

В водном щелочном растворе или в уксусной кислоте перманганат калия является неспецифическим окислителем, который был используется при получении уроновых кислот и их производных. Таким образом, хорошие выходы D-галактуроновой кислоты (35) могут быть получены путем окисления 1,2 3,4-ди- (3-изопропилиден-aD-галактопираноза. 154 D-глюкуроновая кислота (34) может быть получена из крахмал путем окисления ... [Стр.217]

D. Амин. К каждым 300 мг 2,4-D амина добавляют 100 мл кислого раствора перманганата калия (17 мл концентрированной серной кислоты добавляют к 83 мл воды, а затем добавляют 4,7 г твердого перманганата калия). Дайте смеси постоять при комнатной температуре в течение 24 часов, а затем нейтрализуйте, осторожно добавив 10% раствор гидроксида натрия. При перемешивании добавляют насыщенный раствор метабисульфита натрия до образования бесцветного раствора. Смойте этот раствор водой в канализацию.[Pg.186]

Остатки карбофоса можно разложить до неопасных продуктов с использованием водного кислого раствора перманганата калия. Таким образом, на каждый 1 мл коммерческого раствора карбофоса добавьте 50 мл 3 М серной кислоты (8,5 мл концентрированной серной кислоты на 41,5 мл воды) и 3 г перманганата калия. Смесь перемешивают при комнатной температуре 5 часов. Нейтрализуйте раствор, осторожно добавив кальцинированную соду, а затем обесцвечивайте, добавляя при перемешивании насыщенный раствор бисульфита натрия (примерно 10 г бисульфита натрия на 35 мл воды) до образования бесцветного раствора.Смойте прозрачный раствор в канализацию.5 ... [Pg.342]


.

Смотрите также