Оксид бария взаимодействует с каждым из двух веществ гидроксид калия


основных, амфотерных, кислотных – HIMI4KA

Определения и формулы основных, амфотерных и кислотных оксидов были приведены ранее в уроке 6.

Характерные химические свойства основных оксидов: реакции с кислотными оксидами с образованием солей и с кислотами с образованием солей и воды, например:

Некоторые основные оксиды реагируют с водой с образованием оснований. Эта реакция проходит в том случае, если продукт реакции растворим в воде:

В аналогичных условиях, например, оксид железа (II) с водой реагировать не будет, так как гидроксид железа (II) в воде нерастворим.

Амфотерные оксиды взаимодействуют как с кислотами, так и с основаниями с образованием солей и воды или комплексных соединений:

Кроме того, амфотерные оксиды могут взаимодействовать как с кислотными, так и с основными оксидами, например:

С водой амфотерные оксиды не взаимодействуют.

Кислотные оксиды реагируют с основными оксидами с образованием солей; с основаниями, с образованием солей и воды или кислых солей, а также с водой, в том случае если образующаяся в ходе такой реакции кислота растворима в воде:

Кроме того, кислотные оксиды вступают в окислительно-восстановительные и обменные реакции:

Тренировочные задания

1. Оксид натрия взаимодействует с каждым из двух веществ:

1) серная кислота и вода
2) уксусная кислота и азот
3) оксид лития и фосфор
4) оксид бария и серная кислота

2. Оксид калия взаимодействует с

1) азотом и фосфором
2) водой и сульфатом натрия
3) серной кислотой и оксидом фосфора (V)
4) литием и хлоридом натрия

3. Оксид кальция взаимодействует с

1) оксидом кремния
2) оксидом углерода (II)
3) оксидом азота (II)
4) оксидом азота (I)

4. Оксид бария взаимодействует с каждым из двух веществ:

1) азотной кислотой и водой
2) уксусной кислотой и хлором
3) оксидом натрия и азотом
4) оксидом серы (IV) и кремнием

5. Оксид магния не взаимодействует с

1) соляной кислотой
2) серной кислотой
3) оксидом лития
4) оксидом кремния

6. Оксид кальция взаимодействует с каждым из двух веществ:

1) оксидом фосфора (V), водой
2) оксидом углерода (IV) и сульфидом натрия
3) оксидом магния и азот
4) кислородом и сульфатом натрия

7. Оксид кальция реагирует с

1) медью
2) фосфором
3) оксидом углерода (IV)
4) оксидом магния

8. Оксид натрия реагирует с

1) водой
2) сульфатом калия
3) нитратом железа (II)
4) оксидом азота (II)

9. Оксид бария реагирует с каждым из двух веществ:

1) оксидом азота (II) и хлором
2) азотной кислотой и водой
3) оксидом углерода (II) и железом
4) серой и хлоридом кальция

10. Оксид магния реагирует с каждым из двух веществ:

1) оксидом кальция и оксидом железа (II)
2) оксидом алюминия и оксидом хрома (II)
3) соляной кислотой и оксидом кремния (VI)
4) оксидом фосфора (V) и цинком

11. Оксид цинка

1) растворяется в кислотах, но не реагирует с основаниями
2) растворяется в щелочах, но не реагирует с кислотами
3) реагирует с оксидом натрия, но не реагирует с водой
4) реагирует с оксидом калия и водой

12. Оксид хрома (III) реагирует с

1) оксидом калия
2) водой
3) оксидом серы (VI)
4) оксидом азота (I)

13. Оксид алюминия амфотерен, поскольку он способен взаимодействовать

1) как с азотной, так и серной кислотой
2) с водой и кислотами
3) с водой и щелочами
4) как с кислотами, так и со щелочами

14. Оксид алюминия реагирует с

1) сульфатом калия
2) оксидом калия
3) оксидом азота (II)
4) оксидом углерода (IV)

15. Оксид серы (VI) взаимодействует с каждым из двух веществ:

1) оксидом лития и углекислым газом
2) водой и углекислым газом
3) водой и гидроксидом калия
4) кислородом и натрием

16. Оксид фосфора (V) взаимодействует с каждым из двух веществ:

1) кислородом и водородом
2) водой и углекислым газом
3) водой и гидроксидом натрия
4) водой и оксидом углерода (II)

17. Оксид серы (VI) не взаимодействует с

1) водой
2) хлоридом калия
3) гидроксидом натрия
4) оксидом бария

18. Оксид серы (IV) взаимодействует с

1) оксидом углерода (IV) и водой
2) оксидом фосфора (V) и водой
3) сульфатом калия и водой
4) оксидом кальция и гидроксидом натрия

19. Оксид серы (IV) не взаимодействует с

1) водой
2) фосфатом кальция
3) раствором гидроксида натрия
4) гидроксидом кальция

20. Оксид хлора (VII) взаимодействует с каждым из двух веществ:

1) кальцием и углекислым газом
2) водой и углеродом
3) водой и оксидом калия
4) кислородом и азотом

21. Установите соответствие между реагирующими веществами и продуктами реакций.

РЕАГИРУЮЩИЕ ВЕЩЕСТВА
А) Na2O + HCl →
Б) Na2O + CO2
В) Na2O + O

ПРОДУКТЫ РЕАКЦИИ
1) Na2CO3
2) NaCl + H2
3) NaCl + H2O
4) NaO3
5) Na2O2

22. Установите соответствие между реагирующими веществами и продуктами реакций.

РЕАГИРУЮЩИЕ ВЕЩЕСТВА
А) Na2O + H2SO4 (изб.) →
Б) Na2O + Al2O3
В) Na2O + P2O5

ПРОДУКТЫ РЕАКЦИИ
1) NaHSO4
2) NaHSO4 + H2O
3) NaAlO2
4) Na3PO4
5) Na2SO4 + H2O

23. Установите соответствие между реагирующими веществами и продуктами реакций.

РЕАГИРУЮЩИЕ ВЕЩЕСТВА
А) CaO + H3PO4 (изб.) →
Б) CaO + H2O →
В) CaO + CO2 →

ПРОДУКТЫ РЕАКЦИИ
1) Ca(H2PO4)2 + H2O
2) CaCO3
3) Ca(OH)2
4) CaCO2
5) Ca3(PO4)2

24. Установите соответствие между реагирующими веществами и продуктами реакций.

РЕАГИРУЮЩИЕ ВЕЩЕСТВА
А) CaO + SiO2
Б) CaO + H3PO4 (разб.) →
В) CaO + HCl →

ПРОДУКТЫ РЕАКЦИИ
1) Ca(H2PO4)2 + H2O
2) Ca3(PO4)2 + H2O
3) CaCl2 + H2O
4) CaSiO3 5) Ca(OCl)2

25. Установите соответствие между реагирующими веществами и продуктами реакций.

РЕАГИРУЮЩИЕ ВЕЩЕСТВА
А) ZnO + HCl →
Б) ZnO + NaOH ⎯⎯H2O
В) ZnO + Na2O ⎯⎯сплавление

ПРОДУКТЫ РЕАКЦИИ
1) ZnCl2 + H2O
2) ZnCl2
3) Na2[Zn(OH)4]
4) Na2ZnO2 + H2O
5) Na2ZnO2

26. Установите соответствие между реагирующими веществами и продуктами реакций.

РЕАГИРУЮЩИЕ ВЕЩЕСТВА
А) ZnO + H3PO4
Б) ZnO + NaOH + H2O →
В) ZnO + C →

ПРОДУКТЫ РЕАКЦИИ
1) Na2[Zn(OH)4] + H2
2) Na2ZnO2
3) Zn(H2PO4)2 + H2O
4) Zn + CO
5) Zn3(PO4)2 + H2O

27. Установите соответствие между реагирующими веществами и продуктами реакций.

РЕАГИРУЮЩИЕ ВЕЩЕСТВА
А) P2O5 + H2O →
Б) P2O5 + Ca(OH)2 ⎯⎯сплавление
В) P2O5 + NaOH (изб.) →

ПРОДУКТЫ РЕАКЦИИ
1) Ca3(PO4)2 + H2O
2) CaHPO4
3) Na3PO4 + H2O
4) Na3PO4
5) H3PO4

28. Установите соответствие между реагирующими веществами и продуктами реакций.

РЕАГИРУЮЩИЕ ВЕЩЕСТВА
А) P2O5 + H2O →
Б) P2O5 + Na2O →
В) P2O5 + HNO3

ПРОДУКТЫ РЕАКЦИИ
1) H3PO4 + HNO2
2) H3PO4
3) Na3PO4
4) H3PO3
5) HPO3 + N2O5

29. Установите соответствие между реагирующими веществами и продуктами реакций.

РЕАГИРУЮЩИЕ ВЕЩЕСТВА
А) SO2 + Ca(OH)2 (изб.) →
Б) SO2 + Na2O →
В) SO2 + O2 →

ПРОДУКТЫ РЕАКЦИИ
1) CaSO3 + H2O
2) SO3
3) Ca(HSO3)2
4) Na2SO4
5) Na2SO3

30. Установите соответствие между реагирующими веществами и продуктами реакций.

РЕАГИРУЮЩИЕ ВЕЩЕСТВА
А) SO2 + H2S →
Б) SO2 (изб.) + NaOH →
В) SO2 + NaOH (изб.) →

ПРОДУКТЫ РЕАКЦИИ
1) Na2SO4 + H2O
2) Na2SO3 + H2O
3) NaHSO3
4) S + H2O
5) NaHSO4

31. Дана схема превращений:

Напишите молекулярные уравнения реакций, с помощью которых можно осуществить указанные превращения. Для третьего превращения составьте сокращённое ионное уравнение реакции.

32. Дана схема превращений:

Напишите молекулярные уравнения реакций, с помощью которых можно осуществить указанные превращения. Для третьего превращения составьте сокращённое ионное уравнение реакции.

33. Дана схема превращений:

Напишите молекулярные уравнения реакций, с помощью которых можно осуществить указанные превращения. Для третьего превращения составьте сокращённое ионное уравнение реакции.

34. Дана схема превращений:

Напишите молекулярные уравнения реакций, с помощью которых можно осуществить указанные превращения. Для первого превращения составьте сокращённое ионное уравнение реакции.

35. Дана схема превращений:

Напишите молекулярные уравнения реакций, с помощью которых можно осуществить указанные превращения. Для третьего превращения составьте сокращённое ионное уравнение реакции.

36. Дана схема превращений:

Напишите молекулярные уравнения реакций, с помощью которых можно осуществить указанные превращения. Для третьего превращения составьте сокращённое ионное уравнение реакции.

37. Дана схема превращений:

Напишите молекулярные уравнения реакций, с помощью которых можно осуществить указанные превращения. Для третьего превращения составьте сокращённое ионное уравнение реакции.

38. Дана схема превращений:

Напишите молекулярные уравнения реакций, с помощью которых можно осуществить указанные превращения. Для третьего превращения составьте сокращённое ионное уравнение реакции.

39. Дана схема превращений:

Напишите молекулярные уравнения реакций, с помощью которых можно осуществить указанные превращения. Для второго превращения составьте сокращённое ионное уравнение реакции.

40. Дана схема превращений:

Напишите молекулярные уравнения реакций, с помощью которых можно осуществить указанные превращения. Для второго превращения составьте сокращённое ионное уравнение реакции.

41. Дана схема превращений:

Напишите молекулярные уравнения реакций, с помощью которых можно осуществить указанные превращения. Для третьего превращения составьте сокращённое ионное уравнение реакции.

42. Дана схема превращений:

Напишите молекулярные уравнения реакций, с помощью которых можно осуществить указанные превращения. Для первого превращения составьте сокращённое ионное уравнение реакции.

43. Дана схема превращений:

Напишите молекулярные уравнения реакций, с помощью которых можно осуществить указанные превращения. Для второго превращения составьте сокращённое ионное уравнение реакции.

44. Дана схема превращений:

Напишите молекулярные уравнения реакций, с помощью которых можно осуществить указанные превращения. Для второго превращения составьте сокращённое ионное уравнение реакции.

45. Дана схема превращений:

Напишите молекулярные уравнения реакций, с помощью которых можно осуществить указанные превращения. Для третьего превращения составьте сокращённое ионное уравнение реакции.

46. Дана схема превращений:

Напишите молекулярные уравнения реакций, с помощью которых можно осуществить указанные превращения. Для второго превращения составьте сокращённое ионное уравнение реакции.

47. Дана схема превращений:

Напишите молекулярные уравнения реакций, с помощью которых можно осуществить указанные превращения. Для первого превращения составьте сокращённое ионное уравнение реакции.

48. Дана схема превращений:

Напишите молекулярные уравнения реакций, с помощью которых можно осуществить указанные превращения. Для третьего превращения составьте сокращённое ионное уравнение реакции.

49. Дана схема превращений:

Напишите молекулярные уравнения реакций, с помощью которых можно осуществить указанные превращения. Для третьего превращения составьте сокращённое ионное уравнение реакции.

50. Дана схема превращений:

Напишите молекулярные уравнения реакций, с помощью которых можно осуществить указанные превращения. Для третьего превращения составьте сокращённое ионное уравнение реакции.

Ответы

Формула гидроксида бария, молярная масса, октагидрат, применение, MSDS

Что такое гидроксид бария?

Это химическое вещество, также известное как «Барита». Это соединение бария, мягкого серебристого металла группы щелочноземельных металлов.

Его можно получить путем растворения оксида бария (обозначенного как BaO) в воде. Это выражается этой химической реакцией:

BaO + 9 h3O → Ba (OH) 2 · 8h3O

Химическая формула

Химическая формула гидроксида бария - Ba (OH) 2.

Молярная масса

Молярная масса гидроксида бария составляет

171,34 г / моль (в безводных растворах)
189,39 г / моль (моногидрат)
315,46 г / моль (октагидрат)

Растворим ли гидроксид бария в воде?

Гидроксид бария растворим в воде умеренно. Однако это соединение не растворяется в ацетоне. При комнатной температуре он может образовывать раствор. Установлено, что раствор гидроксида бария имеет приблизительную концентрацию 0,1 моль дм-3.


Рисунок 1 - Гидроксид бария
Источник - flish3010.en.made-in-china.com

Свойства гидроксида бария

Физические и химические свойства этого соединения следующие:

Устойчивость

Это стабильное соединение. Несовместим с углекислым газом, кислотами и влагой. Необходимо избегать контакта этого вещества с несовместимыми материалами.

Внешний вид

Это кристаллическое вещество, цвет от белого до прозрачного.

Удельный вес

Удельный вес этого вещества 2,18.

Точка плавления

Вещество плавится при температуре 408 ° C.

Температура кипения

Материал кипит при температуре 780 ° C.

Значение pH

Значение pH гидроксида бария фактически зависит от его концентрации. Тем не менее, pKb этого соединения составляет около -2. Это указывает на то, что он имеет очень простой характер.

Плотность

Имеет плотность 2.18 штук на г см-3

Молекулярная формула

Молекулярная формула октагидрата гидроксида бария - Bah28O10.

Октагидрат гидроксида бария

Это химическое соединение, представляющее собой белый кристаллический порошок. Он твердый и растворим в воде. Он имеет температуру плавления 78 ° C.

Он также известен под другими названиями, такими как

  • Барий гидрат
  • Гидроксид бария
  • 8-гидрат

Использование гидроксида бария

Он используется для ряда целей, например,

  • При производстве щелочи
  • В строительстве из стекла
  • При вулканизации синтетического каучука
  • В ингибиторах коррозии
  • В качестве буровых растворов, пестицидов и смазок
  • Средство от накипи котла
  • Для рафинации растительных и животных масел
  • Для фресковой живописи
  • В воде для умягчения
  • В составе гомеопатических средств
  • Для ликвидации разливов кислоты

Также используется в сахарной промышленности для приготовления свекловичного сахара.

Гидроксид бария MSDS

Паспорт безопасности материала (MSDS) гидроксида бария выглядит следующим образом:

Меры безопасности

Это вещество может причинить вред при вдыхании, проглатывании или даже воздействии. Прямое воздействие на кожу, глаза или одежду может быть опасным. После работы с этим материалом следует тщательно вымыть руки. Если одежда попала в контакт с этим веществом, ее следует немедленно снять. Любой участок кожи, подвергшийся воздействию этого соединения, следует немедленно промыть холодной водой с легким мылом.

Токсикология

Продолжительное воздействие этого вещества может вызвать раздражение кожи. Пыль этого материала может раздражать легкие и дыхательные пути. Проглатывание может вызвать ряд неприятных симптомов, например

  • Тошнота
  • Рвота
  • Головная боль
  • Головокружение
  • Раздражение желудочно-кишечного тракта

Лица с уже существующими заболеваниями дыхательной системы, кожи или глаз могут стать более восприимчивыми к одному или нескольким из вышеупомянутых симптомов.

Личная безопасность

Необходимо безопасно хранить этот материал, чтобы избежать утечки и возгорания. Любой пожар, возникший из-за этого вещества, можно ликвидировать с помощью огнетушителей. Лица, использующие это соединение, должны носить защитную одежду и использовать автономный дыхательный аппарат, чтобы предотвратить контакт этого материала с глазами, одеждой или кожей.

Гидроксид бария и соляная кислота

Гидроксид бария используется для нейтрализации соляной кислоты.Химическая реакция между двумя соединениями дается как:

Ba (OH) 2 (водный) + 2HCl (водный) -> BaCl2 (водный) + 2h3O (жидкий)

Гидроксид бария и серная кислота

Гидроксид бария часто используется для нейтрализации серной кислоты. Реакция выражается через это представление:

Ba (OH) 2 (твердый) + h3SO4 (водный) → BaSO4 (твердый) + 2h3O (жидкий)

Небольшое количество BaSO4, которое получают из умеренно растворимого Ba (OH) 2, покрывает и осаждает Ba (OH) 2.В результате реакция между h3SO4 и Ba (OH) 2 останавливается.

Гидроксид бария и хлорид аммония

Реакция нейтрализации твердого гидратированного гидроксида бария твердым хлоридом аммония носит эндотермический характер. В результате реакции образуется жидкость, температура которой падает примерно до -20 ° C. Он представлен как:

Ba (OH) 2 (водный) + 2Nh5Cl (водный) → BaCl2 (водный) + 2Nh4 (газообразный) + HOH (жидкий).

Гидроксид бария и тиоцианат аммония

Это эндотермическая реакция, при которой образуется тиоцианат бария.Выражается через эту химическую реакцию:

Ba (OH) 2,8h3O (твердый) + 2 Nh5SCN (твердый) → Ba (SCN) 2 (твердый) + 10 h3O (жидкий) + 2 Nh4 (газообразный).

Моногидрат гидроксида бария

Это химическое соединение представляет собой белый порошок. Он также известен под другими названиями, такими как

.
  • Сухой гидроксид бария
  • Каустическая барита моногидрат
  • 1-гидрат гидроксида бария

Соединение используется для различных целей, например,

  • Очищающая вода
  • Присадки к производственным маслам
  • Производство смазочных материалов
  • Производство химикатов с высоким содержанием бария

Контакт с кожей, вдыхание или проглатывание этого материала может вызвать опасную опасность для здоровья.В острых случаях также может наступить смерть. Это негорючее вещество, но при нагревании может разлагаться и образовывать токсичное и / или коррозионное пламя. Его следует хранить в контейнерах в прохладном, сухом месте и вдали от источников тепла. В противном случае контейнеры могут взорваться в нагретой среде.

Гидроксид бария - сильное или слабое основание?

Это соединение хорошо растворяется в воде. Он считается единственным двухосновным сильным основанием. Он способен делать лакмусовую бумагу синей и может образовывать соль и воду при реакции с кислотой.

Гидроксид бария и азотная кислота

Гидроксид бария реагирует с азотной кислотой с образованием соли (нитрата бария) и воды, как и в случае классических кислотно-основных реакций. Химическая реакция выражается как:

2HNO3 (водная азотная кислота) + Ba (OH) 2 (водный гидроксид бария) → Ba (NO3) 2 (водный нитрат бария) + 2h3O (вода)

Гидроксид бария и диоксид углерода

Ba (OH) 2 реагирует с диоксидом углерода с образованием карбоната бария. Это выражается следующей химической реакцией:

Ba (OH) 2 + CO2 → BaCO3 + h3O.

Хлорная кислота и гидроксид бария

Две молекулы хлорной кислоты реагируют с одной молекулой гидроксида бария с образованием двух молекул воды и одной молекулы перхлората бария (также известного как хлорат бария). Реакция выражается как

.

Ba (OH) 2 + 2 HClO4 (водный) → Ba (ClO4) 2 (водный) + 2 h3O (жидкий).

Гидроксид бария, используемый в этой реакции, представляет собой твердый или сильно разбавленный водный раствор.

Уксусная кислота и гидроксид бария

Две молекулы уксусной кислоты реагируют с одной молекулой гидроксида бария с образованием соли (нитрата бария) вместе с водой, как и при любых других кислотно-основных реакциях.Выражается как:

2 Ch4COOH + Ba (OH) 2 → Ba (C2h4O2) 2 + 2h3O

Реакцию можно облегчить, заменив C2h4O2 на Ac. Замененная таким образом химическая реакция может быть представлена ​​как:

2 HAc + Ba (OH) 2 → Ba (Ac) 2 + 2h3O

Гидроксид бария и фосфорная кислота

В этой кислотно-основной реакции нейтрализации участвуют три молекулы гидроксида бария и две молекулы фосфорной кислоты. Формульное представление этой химической реакции выглядит следующим образом:

3 Ba (OH) 2 + 2 h4PO4 → Ba3 (PO4) 2 + 6h3O

Приводит к осаждению фосфата бария.Это можно рассматривать как реакцию «двойной замены», в которой барий заменяет водород, который, в свою очередь, заменяет барий.

3 Ba (OH) 2 + 2 h4PO4 → Ba3 (PO4) 2 + 6HOH

Гидроксид бария и нитрат аммония

Две молекулы водного гидроксида бария реагируют с водным раствором нитрата аммония с образованием водных растворов нитрата бария, аммиака и воды. Химическая реакция дана как:

Ba (OH) 2 (водный) + 2 Nh5NO3 (водный) → Ba (NO3) 2 (водный) + 2 Nh4 (водный) + 2 h3O (жидкий).

Аммиак может растворяться в растворе до насыщения. Затем он может превратиться в газ, завершив химическое изменение.

Гидроксид бария и хлорид аммония

Твердый хлорид аммония смешивают с твердым гидратированным гидроксидом бария в химическом стакане с образованием хлорида бария. Газообразный аммиак и гидроксид водорода (вода) - другие продукты, возникающие в результате этой эндотермической реакции. В этой холодной реакции температура резко падает примерно до -20 ° C.

Формульное представление этой реакции выглядит следующим образом:

Ba (OH) 2 (водный) + 2Nh5Cl (водный) → BaCl2 (водный) + 2Nh4 (газообразный) + HOH (жидкий)

Октагидрат гидроксида бария и тиоцианат аммония

Тиоцианат аммония (Nh5SCN) смешивают с твердым октагидратом гидроксида бария (Ba (OH) 2,8h3O) для получения тиоцианата бария. В результате кислотно-щелочной реакции образуется щелочной газ, который можно определить с помощью индикатора pH.

Уравнение этой эндотермической реакции имеет вид:

Ba (OH) 2.8h3O (твердый) + 2 Nh5SCN (твердый) → Ba (SCN) 2 (т. Е) + 10 h3O (жидкий) + 2 Nh4 (газообразный).

Это эндотермическая реакция, при которой происходит поглощение тепла из окружающей среды. Это приводит к быстрому падению температуры этой реакции, которую можно определить с помощью цифрового термометра. Это заставляет стакан прижаться к деревянной доске. По этой причине мензурку следует поставить на небольшую доску, на которую налито несколько капель воды.

Гидроксид бария - одно из основных соединений бария.В продаже он чаще всего доступен в виде белого гранулированного моногидрата.

Артикул:

http://jchemed.chem.wisc.edu/JCESoft/CCA/CCA3/MAIN/ENDO2/PAGE1.HTM

http://www.practicalchemistry.org/experiments/endothermic-solid-solid-reactions,277,EX.html

http://www.chem.umn.edu/outreach/endoexo.html

http://www.chemicalbook.com/ChemicalProductProperty_EN_CB4318493.htm

,

кислотно-основное поведение периода 3 оксидов

КИСЛОТНО-ОСНОВНОЕ ПОВЕДЕНИЕ ОКСИДОВ ПЕРИОДА 3

 

На этой странице рассматриваются реакции оксидов элементов периода 3 (натрия в хлор) с водой, а также с кислотами или основаниями, где это необходимо. Очевидно, что аргон не используется, поскольку он не образует оксид.

 

Краткое описание тенденции

Оксиды

Мы будем рассматривать следующие оксиды:

Na 2 O MgO Al 2 O 3 SiO 2 P 4 O 10 SO 3 Cl 2 O 7
P 4 O 6 SO 2 Cl 2 O

Примечание: Если вы еще не были там, возможно, вам будет интересно посмотреть на страницу о структурах и физических свойствах оксидов Периода 3 в качестве полезного введения, прежде чем идти дальше.

Используйте кнопку НАЗАД в браузере, чтобы быстро вернуться на эту страницу позже, если вы решите перейти по этой ссылке.



Тенденция кислотно-щелочного поведения

Тенденция кислотно-основного поведения показана в различных реакциях, но в виде простого резюме:

  • Тенденция идет от сильноосновных оксидов в левой части к сильнокислотным в правой части через амфотерный оксид (оксид алюминия) в середине.Амфотерный оксид проявляет как кислотные, так и основные свойства.

Для этой простой тенденции вы должны смотреть только на самые высокие оксиды отдельных элементов. Это те, которые находятся в верхнем ряду выше, и там, где элемент находится в максимально возможной степени окисления. Картина не так проста, если вы включите и другие оксиды.

Для оксидов неметаллов их кислотность обычно рассматривается в терминах кислотных растворов, образующихся при их реакции с водой - например, триоксид серы реагирует с образованием серной кислоты.Однако все они будут реагировать с основаниями, такими как гидроксид натрия, с образованием солей, таких как сульфат натрия.

Все эти реакции подробно рассматриваются на оставшейся части этой страницы.


Предупреждение: Остальная часть этой страницы содержит довольно много деталей о различных оксидах. Не упускайте из виду общую тенденцию этого периода в отношении самых высоких оксидов, когда вы смотрите на все эти детали.

Важно знать, что ваша программа говорит по этой теме, а также изучать прошлые работы и схемы отметок - иначе вы в конечном итоге увязнете в массе деталей, о которых вам действительно не нужно знать.Если вы готовитесь к экзамену в Великобритании (уровень A или его эквивалент) и у вас нет ничего из этого, перейдите по этой ссылке, прежде чем идти дальше, чтобы узнать, как их получить.



 

Химия индивидуальных оксидов

Оксид натрия

Оксид натрия - простой сильноосновной оксид. Он является основным, поскольку содержит ион оксида, O 2-, который является очень сильным основанием с высокой тенденцией к объединению с ионами водорода.

Реакция с водой

Оксид натрия экзотермически реагирует с холодной водой с образованием раствора гидроксида натрия. В зависимости от его концентрации pH будет около 14.

Реакция с кислотами

Оксид натрия, как сильное основание, также вступает в реакцию с кислотами. Например, он будет реагировать с разбавленной соляной кислотой с образованием раствора хлорида натрия.

 

Оксид магния

Оксид магния также является простым основным оксидом, поскольку он также содержит ионы оксида.Однако он не такой щелочной, как оксид натрия, потому что ионы оксида не так свободны.

В случае оксида натрия твердое вещество удерживается вместе за счет притяжения между 1+ и 2- ионами. В случае оксида магния притяжение составляет от 2+ до 2-. Чтобы их сломать, требуется больше энергии.

Даже с учетом других факторов (таких как энергия, выделяемая, когда положительные ионы притягиваются к воде в образовавшемся растворе), общий эффект этого заключается в том, что реакции с участием оксида магния всегда будут менее экзотермическими, чем реакции оксида натрия.

Реакция с водой

Если встряхнуть немного белого порошка оксида магния с водой, ничего не произойдет - похоже, он не отреагирует. Однако, если вы проверите уровень pH жидкости, вы обнаружите, что он находится где-то около 9, что свидетельствует о слабощелочной активности.

Должна быть какая-то небольшая реакция с водой с образованием гидроксид-ионов в растворе. В результате реакции образуется некоторое количество гидроксида магния, но он почти нерастворим, поэтому не так много гидроксид-ионов действительно попадает в раствор.

Реакция с кислотами

Оксид магния реагирует с кислотами так же, как и любой простой оксид металла. Например, он реагирует с теплой разбавленной соляной кислотой с образованием раствора хлорида магния.

 

Оксид алюминия

Описание свойств оксида алюминия может сбивать с толку, поскольку он существует в нескольких различных формах. Одна из этих форм очень инертна.Химически он известен как альфа-Al 2 O 3 и производится при высоких температурах.

Далее мы принимаем одну из наиболее реактивных форм.

Оксид алюминия амфотерный . Он вступает в реакцию как с основанием, так и с кислотой.

Реакция с водой

Оксид алюминия не реагирует с водой так же просто, как оксид натрия и оксид магния, и не растворяется в ней.Хотя он все еще содержит ионы оксида, они слишком прочно удерживаются в твердой решетке, чтобы вступать в реакцию с водой.


Примечание: Однако некоторые формы оксида алюминия действительно очень эффективно поглощают воду. Я не смог установить, связано ли это поглощение только с такими вещами, как водородные связи, или же происходит настоящая химическая реакция с образованием какого-то гидроксида. Если у вас есть надежная информация по этому поводу, не могли бы вы связаться со мной по адресу, указанному на странице об этом сайте.


Реакция с кислотами

Оксид алюминия содержит ионы оксида и поэтому реагирует с кислотами так же, как оксиды натрия или магния. Это означает, например, что оксид алюминия будет реагировать с горячей разбавленной соляной кислотой с образованием раствора хлорида алюминия.

В этой (и подобных реакциях с другими кислотами) оксид алюминия демонстрирует основную сторону своей амфотерной природы.

 

Реакция с основаниями

Оксид алюминия также имеет кислотную сторону в своей природе, и это проявляется в реакции с основаниями, такими как раствор гидроксида натрия.

Образуются различные алюминаты - соединения, в которых алюминий находится в отрицательном ионе. Это возможно, потому что алюминий имеет способность образовывать ковалентные связи с кислородом.

В случае натрия существует слишком большая разница в электроотрицательности между натрием и кислородом для образования чего-либо, кроме ионной связи.Но электроотрицательность увеличивается по мере прохождения периода, а разница электроотрицательностей между алюминием и кислородом меньше. Это позволяет образовывать ковалентные связи между ними.


Примечание: Если вас не устраивает электроотрицательность, вы найдете объяснение, если перейдете по этой ссылке.

Используйте кнопку НАЗАД в браузере, чтобы вернуться на эту страницу позже.



С горячим концентрированным раствором гидроксида натрия оксид алюминия реагирует с образованием бесцветного раствора тетрагидроксоалюмината натрия.


Примечание: Вы можете найти все виды других формул, приведенных для продукта этой реакции. Они варьируются от NaAlO 2 (который является дегидратированной формой той, что указан в уравнении) до Na 3 Al (OH) 6 (который представляет собой совершенно другой продукт).

То, что вы получите, будет зависеть от таких вещей, как температура и концентрация раствора гидроксида натрия. В любом случае, правда почти наверняка намного сложнее, чем что-либо из вышеперечисленного.Это тот случай, когда было бы неплохо узнать, что ваши экзаменаторы цитируют в своих вспомогательных материалах или схемах выставления оценок, и придерживаться этого.

При необходимости получите такую ​​информацию от экзаменаторов (если вы изучаете курс в Великобритании), перейдя по ссылкам на странице учебных программ.



 

Диоксид кремния (оксид кремния (IV))

К тому времени, когда вы доберетесь до кремния в течение периода, электроотрицательность увеличится настолько, что уже не будет достаточной разницы в электроотрицательности между кремнием и кислородом для образования ионных связей.

Диоксид кремния не имеет основных свойств - не содержит оксидных ионов и не реагирует с кислотами. Вместо этого он очень слабокислый, реагируя с сильными основаниями.

Реакция с водой

Диоксид кремния не реагирует с водой из-за сложности разрушения гигантской ковалентной структуры.

Реакция с основаниями

Диоксид кремния реагирует с раствором гидроксида натрия, но только если он горячий и концентрированный.Образуется бесцветный раствор силиката натрия.

Вы также можете быть знакомы с одной из реакций, происходящих при извлечении железа в доменной печи - в которой оксид кальция (из известняка, который является одним из сырьевых материалов) реагирует с диоксидом кремния с образованием жидкого шлака, силиката кальция. Это также пример реакции кислого диоксида кремния с основанием.

 

Важно! Что касается остальных оксидов, мы в основном будем рассматривать результаты их реакции с водой с образованием растворов различных кислот.

Когда мы говорим о повышении кислотности оксидов по мере перехода, скажем, от оксида фосфора (V) к триоксиду серы к оксиду хлора (VII), обычно мы говорим о возрастающей силе кислот, образующихся при их реакции. с водой.

 

Оксиды фосфора

Мы собираемся рассмотреть два оксида фосфора, оксид фосфора (III), P 4 O 6 , и оксид фосфора (V), P 4 O 10 .

Оксид фосфора (III)

Оксид фосфора (III) реагирует с холодной водой с образованием раствора слабой кислоты H 3 PO 3 , известной как фосфористая кислота, ортофосфорная кислота или фосфоновая кислота. Его реакция с горячей водой намного сложнее.


Примечание: Обратите внимание на окончание «-ous» в первых двух именах. Это не орфографическая ошибка - это правда! Его используют, чтобы отличить его от фосфорной кислоты, которая совершенно иная (см. Ниже).

Названия фосфорсодержащих кислот - это настоящий кошмар! (На самом деле, насколько я понимаю, фосфорные кислоты в целом всегда были и продолжают быть полным кошмаром!) Не беспокойтесь об этих названиях на этом уровне. Просто убедитесь, что вы можете написать формулы, если вам это нужно - и будьте благодарны за то, что вам не нужно больше о них знать!




Чистая неионизированная кислота имеет структуру:

Водороды не выделяются в виде ионов до тех пор, пока вы не добавите в кислоту воду, и даже в этом случае выделяется немного, потому что фосфористая кислота - это всего лишь слабая кислота.

Фосфорная кислота имеет pK a , равное 2,00, что делает ее более сильной, чем обычные органические кислоты, такие как этановая кислота (pK a = 4,76).


Примечание: Если вы знаете о pK a , но не очень уверены, вы можете перейти по этой ссылке, но это, вероятно, займет у вас много времени. Все, что вам действительно нужно знать по этой теме, это то, что чем ниже значение pK a , тем сильнее кислота.


Маловероятно, что вы когда-нибудь прореагируете напрямую оксидом фосфора (III) с основанием, но вам может потребоваться знать, что произойдет, если вы прореагируете образовавшуюся фосфористую кислоту с основанием.

В фосфористой кислоте два атома водорода в группах -ОН являются кислотными, а другой - нет. Это означает, что вы можете получить две возможные реакции, например, с раствором гидроксида натрия в зависимости от используемых пропорций.

В первом случае только один из кислых атомов водорода прореагировал с гидроксид-ионами основания. Во втором случае (с использованием вдвое большего количества гидроксида натрия) прореагировали оба.

Если бы вы реагировали непосредственно оксидом фосфора (III) с раствором гидроксида натрия, а не сначала производили кислоту, вы бы получили те же возможные соли.


Примечание: Проверьте свой учебный план, прошлые работы и схемы отметок, прежде чем вы слишком увязнете в этом! Перейдите по этой ссылке, чтобы узнать, как получить их, если у вас их еще нет (только учебные программы для Великобритании).


Оксид фосфора (V)

Оксид фосфора (V) бурно реагирует с водой с образованием раствора, содержащего смесь кислот, природа которой зависит от условий.Обычно мы просто рассматриваем одну из них, фосфорную (V) кислоту, H 3 PO 4 , также известную как фосфорная кислота или ортофосфорная кислота.

На этот раз чистая неионизированная кислота имеет структуру:

Фосфорная (V) кислота также является слабой кислотой с pK a 2,15. Это делает его на слабее фосфористой кислоты. Растворы обеих этих кислот с концентрацией около 1 моль дм -3 будут иметь pH около 1.

Опять же, вы вряд ли когда-нибудь прореагируете этот оксид с основанием, но можно ожидать, что вы узнаете, как фосфорная (V) кислота реагирует с чем-то вроде раствора гидроксида натрия.

Если вы посмотрите на структуру, вы увидите, что она имеет три группы -ОН, и каждая из них имеет кислый атом водорода. Вы можете провести реакцию с гидроксидом натрия в три стадии, причем один за другим эти атомы водорода реагируют с ионами гидроксида.

Опять же, если бы вы реагировали непосредственно оксидом фосфора (V) с раствором гидроксида натрия, а не сначала производили кислоту, вы бы получили те же возможные соли.

Это становится смешным, поэтому я приведу только один пример из возможных уравнений:


Примечание: Если на экзамене вам задают вопрос, в котором вам просто нужно написать уравнение реакции гидроксида натрия с фосфорной (V) кислотой, какое уравнение вам следует написать? Это не имеет особого значения - все они совершенно верны. В каждом случае это просто зависит от пропорций двух используемых вами реагентов.

Если вы действительно хотите быть уверенным, проверьте прошлые документы и отметьте схемы. Я нашел один вопрос о реакции между оксидом натрия и фосфорной (V) кислотой, где схема маркировки принимала любое из возможных уравнений - чего я и ожидал.

(Я знаю, что не давал вам этот конкретный набор уравнений, но их нетрудно решить, если вы понимаете принцип, и я не могу дать каждое отдельное кислотно-основное уравнение. Это уже давно страница будет длиться вечно, и все в отчаянии сдадутся задолго до конца! Вот почему вы пытаетесь понять химию, а не изучать ее как попугай.)

Пожалуйста, не тратьте время на изучение уравнений - или, по крайней мере, до тех пор, пока вы не узнаете и не поймете всю остальную химию, которую вам нужно знать и понимать! У любого уравнения очень мало шансов пройти экзамен, даже если оно входит в вашу конкретную программу.

Жизнь слишком коротка, чтобы тратить время на изучение уравнений. Знайте, как их решить, если вам нужно.



 

Оксиды серы

Мы собираемся рассмотреть диоксид серы SO 2 и триоксид серы SO 3 .

Диоксид серы

Двуокись серы хорошо растворяется в воде, реагируя с ней, давая раствор, известный как сернистая кислота, который традиционно имеет формулу H 2 SO 3 . Однако основным веществом в растворе является просто гидратированный диоксид серы - SO 2 , xH 2 O. Спорный вопрос, существует ли вообще в растворе какая-либо H 2 SO 3 как таковая.

Сернистая кислота также является слабой кислотой с pK a около 1.8 - немного сильнее, чем две указанные выше фосфорсодержащие кислоты. Достаточно концентрированный раствор сернистой кислоты снова будет иметь pH около 1.

.

Примечание: Существует некоторая изменчивость значений pK и для серной кислоты, указанных различными источниками - от 1,77 до 1,92. У меня нет возможности узнать, что из этого правильно.

Ионизация «серной кислоты» включает ионизацию гидратированного комплекса, и вам не следует беспокоиться об этом на этом уровне.



Диоксид серы также будет напрямую реагировать с основаниями, такими как раствор гидроксида натрия. Если диоксид серы барботируют через раствор гидроксида натрия, сначала образуется раствор сульфита натрия, а затем раствор гидрогенсульфита натрия, когда диоксид серы оказывается в избытке.


Примечание: Сульфит натрия также называют сульфатом натрия (IV).Гидросульфит натрия также является гидросульфатом натрия (IV) или бисульфитом натрия.

Обратите внимание, что уравнения для этих реакций отличаются от примеров для фосфора. В этом случае мы реагируем непосредственно оксид с гидроксидом натрия, потому что мы, скорее всего, будем это делать именно так.



Другая важная реакция диоксида серы - с основным оксидом кальция с образованием сульфита кальция (сульфата кальция (IV)).Это лежит в основе одного из методов удаления диоксида серы из дымовых газов на электростанциях.

 

Триоксид серы

Триоксид серы бурно реагирует с водой с образованием тумана из концентрированных капель серной кислоты.


Примечание: Если вы знаете о контактном процессе производства серной кислоты, вы знаете, что триоксид серы всегда преобразуется в серную кислоту циклическим способом, чтобы избежать проблемы тумана серной кислоты.

Если вам интересно, вы найдете подробную информацию о процессе обращения в другом месте на этом сайте, но это не относится к текущей теме.



Чистая неионизированная серная кислота имеет структуру:

Серная кислота - сильная кислота, и растворы обычно имеют pH около 0.

Кислота реагирует с водой, давая ион гидроксония (ион водорода в растворе, если хотите) и ион сероводорода.Эта реакция проходит практически на 100%.

Второй водород удалить сложнее. На самом деле ион сероводорода является относительно слабой кислотой, по силе близкой к кислотам, которые мы уже обсуждали на этой странице. На этот раз вы получите равновесие:

 

Серная кислота, конечно же, имеет все реакции сильной кислоты, с которыми вы знакомы из вводных курсов химии. Например, нормальная реакция с раствором гидроксида натрия заключается в образовании раствора сульфата натрия, в котором оба кислых водорода реагируют с ионами гидроксида.

В принципе, вы также можете получить раствор гидросульфата натрия, используя вдвое меньше гидроксида натрия и просто реагируя с одним из двух кислых водородов в кислоте. На практике лично я никогда этого не делал - на данный момент не вижу особого смысла!

 

Сам по себе триоксид серы также вступает в прямую реакцию с основаниями с образованием сульфатов. Например, он будет реагировать с оксидом кальция с образованием сульфата кальция. Это похоже на реакцию с диоксидом серы, описанную выше.

 

Оксиды хлора

Хлор образует несколько оксидов, но единственными двумя, упомянутыми в любой из учебных программ уровня A Великобритании, являются оксид хлора (VII), Cl 2 O 7 , и оксид хлора (I), Cl 2 O. Хлор ( VII) оксид также известен как гептоксид дихлора, а оксид хлора (I) - как монооксид дихлора.

Оксид хлора (VII)

Оксид хлора (VII) - высший оксид хлора - хлор находится в максимальной степени окисления +7.Он продолжает тенденцию высших оксидов элементов периода 3 к тому, чтобы быть более сильными кислотами.

Оксид хлора (VII) реагирует с водой с образованием очень сильной кислоты, хлорноватой (VII) кислоты, также известной как хлорная кислота. PH типичных растворов, как и серной кислоты, будет около 0,

.

Неионизированная хлорная (VII) кислота имеет структуру:

Вероятно, вам это не понадобится для целей UK A level (или его эквивалентов), но это полезно, если вы понимаете причину, по которой хлорная (VII) кислота является более сильной кислотой, чем хлорная (I) кислота (см. Ниже) ,Вы можете применить те же рассуждения к другим кислотам на этой странице.

Когда ион хлората (VII) (перхлорат-ион) образуется в результате потери иона водорода (например, когда он реагирует с водой), заряд может быть делокализован по каждому атому кислорода в ионе. Это делает его очень стабильным и означает, что хлорная (VII) кислота очень сильна.


Примечание: Это похоже на делокализацию, которая происходит в этаноат-ионе, образующемся, когда этановая кислота ведет себя как слабая кислота.Вы найдете это более подробно на странице об органических кислотах.

Используйте кнопку НАЗАД в браузере, если вы решите перейти по этой ссылке.



Хлорная (VII) кислота реагирует с раствором гидроксида натрия с образованием раствора хлората натрия (VII).

Сам оксид хлора (VII) также реагирует с раствором гидроксида натрия с образованием того же продукта.

 

Оксид хлора (I)

Оксид хлора (I) намного менее кислый, чем оксид хлора (VII).Он до некоторой степени реагирует с водой с образованием хлорноватистой (I) кислоты HOCl, также известной как хлорноватистая кислота.


Примечание: Вы также можете найти хлорную (I) кислоту, записанную как HClO. Форма, которую я использовал, более точно отражает способ соединения атомов.


Структура хлорноватой (I) кислоты точно такая же, как показано ее формулой HOCl. У него нет атомов кислорода с двойными связями и нет способа делокализации заряда по отрицательному иону, образовавшегося в результате потери водорода.

Это означает, что образовавшийся отрицательный ион не очень стабилен и легко восстанавливает свой водород, чтобы превратиться в кислоту. Хлорная (I) кислота очень слабая (pK a = 7,43).

Хлорная (I) кислота реагирует с раствором гидроксида натрия с образованием раствора хлората натрия (I) (гипохлорита натрия).

Оксид хлора (I) также напрямую реагирует с гидроксидом натрия с образованием того же продукта.

 
 

Куда бы вы сейчас хотели пойти?

В меню «Период 3»., ,

В меню «Неорганическая химия». , ,

В главное меню. , ,

 

© Джим Кларк 2005 (последнее изменение - ноябрь 2015 г.)

.

кислотно-основных реакций | Типы реакций

13.2 Кислотно-основные реакции (ESBQY)

Реакция между кислотой и основанием известна как реакция нейтрализации . Часто при взаимодействии кислоты и основания образуются соль и вода. Мы рассмотрим несколько примеров кислотно-основных реакций.

В химии слово соль не означает белое вещество, которым вы посыпаете пищу (это белое вещество является солью, но не единственной солью). Соль (для химиков) - это продукт кислотно-щелочной реакции, состоящий из катиона основания и аниона кислоты.{-} \) ионы. Соль все еще образуется как единственный продукт, но вода не образуется.

Важно понимать, насколько полезны эти реакции нейтрализации. Ниже приведены несколько примеров:

  • Бытовое использование

    Оксид кальция (\ (\ text {CaO} \)) - это основа (все оксиды металлов являются основаниями), которую наносят на слишком кислую почву. Порошок известняка \ ((\ text {CaCO} _ {3}) \) также можно использовать, но его действие намного медленнее и менее эффективно.Эти вещества также могут использоваться в больших количествах в сельском хозяйстве и в реках.

    Известняк (белый камень или карбонат кальция) используется в выгребных ямах (или длинных отстойниках). Известняк - это основа, которая помогает нейтрализовать кислотные отходы.

  • Биологическое использование

    Кислоты в желудке (например, соляная кислота) играют важную роль в переваривании пищи. Однако, когда у человека есть язва желудка или когда в желудке слишком много кислоты, эти кислоты могут вызвать сильную боль. Антациды используются для нейтрализации кислот, чтобы они не горели так сильно. Антациды - это основания, нейтрализующие кислоту. Примерами антацидов являются гидроксид алюминия, гидроксид магния («магнезиальное молоко») и бикарбонат натрия («бикарбонат соды»). Антациды также можно использовать для снятия изжоги.

  • Промышленное использование

    Основной гидроксид кальция (известковая вода) может использоваться для поглощения вредного кислого \ (\ text {SO} _ {2} \) газа, который выделяется на электростанциях и при сжигании ископаемого топлива.

Укусы пчел являются кислыми и имеют pH от \ (\ text {5} \) до \ (\ text {5,5} \). Их можно успокоить, используя такие вещества, как бикарбонат соды и молоко магнезии. Обе основы помогают нейтрализовать кислотный пчелиный укус и немного уменьшить зуд!

Кислотно-основные реакции

Цель

Для исследования кислотно-основных реакций.

Аппаратура и материалы

  • Колба мерная
  • Колбы конические
  • раствор гидроксида натрия
  • раствор соляной кислоты
  • пипетка
  • индикатор

Метод

  1. Используйте пипетку, чтобы добавить \ (\ text {20} \) \ (\ text {ml} \) раствор гидроксида натрия в мерную колбу.Залить водой до отметки и хорошо взболтать.

  2. Отмерьте \ (\ text {20} \) \ (\ text {ml} \) раствор гидроксида натрия в коническую колбу. Добавьте несколько капель индикатора.

  3. Медленно добавьте \ (\ text {10} \) \ (\ text {ml} \) соляной кислоты. Если есть изменение цвета, остановитесь. Если нет, добавьте другой \ (\ text {5} \) \ (\ text {ml} \). Продолжайте добавлять \ (\ text {5} \) \ (\ text {ml} \) приращения, пока не заметите изменение цвета.

Наблюдения

Раствор меняет цвет после добавления заданного количества соляной кислоты.

В приведенном выше эксперименте вы использовали индикатор, чтобы увидеть, когда кислота нейтрализует основание. Индикаторы - это химические соединения, меняющие цвет в зависимости от того, в кислоте они или в основе.

Включен рекомендуемый эксперимент для неформальной оценки по обнаружению природных индикаторов. Учащиеся могут протестировать множество разноцветных растений, чтобы увидеть, что происходит с каждым растением при смешивании с кислотой или основанием.Основная идея состоит в том, чтобы учащиеся извлекли цвет из растения путем кипячения растительного вещества, а затем сливают жидкость. Для таких веществ, как порошок карри, учащиеся могут растворить его в воде, а для чая они могут заварить чашку чая, а затем вынуть пакетик перед тестом. Затем полученную жидкость можно протестировать, чтобы увидеть, является ли она индикатором. Альтернативой смешиванию кислоты или основания с жидкостью является замачивание полоски бумаги в жидкости, а затем нанесение капли кислоты или основания на бумагу.В эксперименте ниже также рассматриваются некоторые другие вещества, такие как разрыхлитель, ванильная эссенция и лук. Разрыхлитель шипит в кислотах, но не в щелочах. Лук и ванильная эссенция теряют свой характерный запах в основном растворе.

Важно, чтобы учащиеся не клали лицо или нос прямо над стаканом или в него, когда нюхали лук и ванильную эссенцию. Они должны держать стакан в одной руке, а другой рукой доносить (т. Е. Махать рукой взад и вперед) запах к своему лицу.

Кислоты и щелочи едкие и могут вызвать серьезные ожоги, поэтому с ними нужно обращаться осторожно.

Показатели

Цель

Чтобы определить, какие растения и продукты питания могут выступать в качестве индикаторов.

Аппаратура и материалы

  • Возможные индикаторы: краснокочанная капуста, свекла, ягоды (например, шелковица), порошок карри, красный виноград, лук, чай (ройбуш или обычный), разрыхлитель, ванильная эссенция
  • кислоты (например, уксус, соляная кислота), основания (напр.грамм. аммиак (во многих бытовых чистящих средствах)) для испытания
  • Стаканы

Метод

  1. Возьмите небольшое количество первого возможного индикатора (не используйте лук, ванильную эссенцию и разрыхлитель). Варить массу до тех пор, пока вода не изменит цвет.

  2. Отфильтруйте полученный раствор в стакан, стараясь не попасть в стакан. (Также можно вылить воду через дуршлаг или сито.)

  3. Половину полученного окрашенного раствора налейте во второй стакан.

  4. Поместите один стакан на лист бумаги формата А4 с надписью «кислоты». Поместите другой стакан на лист бумаги с надписью «основы».

  5. Повторите со всеми другими возможными индикаторами (кроме лука, ванильной эссенции и разрыхлителя).

  6. Во все мензурки на листе с кислотой осторожно налейте \ (\ text {5} \) \ (\ text {ml} \) кислоты.Запишите свои наблюдения.

  7. Во все мензурки на листе основы осторожно налейте \ (\ text {5} \) \ (\ text {ml} \) основы. Запишите свои наблюдения.

    Если у вас более одной кислоты или основания, вам нужно будет повторить вышеуказанные шаги, чтобы получить свежие индикаторные образцы для вашей второй кислоты или основания. Или вы можете использовать меньшее количество полученного цветного раствора для каждой кислоты и основания, которые вы хотите проверить.

  8. Обратите внимание на запах лука и ванильной эссенции.Положите в стакан небольшой кусочек лука. Это для тестирования с кислотой. Налейте \ (\ text {5} \) \ (\ text {ml} \) кислоты. Помашите рукой над стаканом, чтобы выдувать воздух к носу. Что вы замечаете в запахе лука? Повторите то же самое с ванильной эссенцией.

  9. Поместите небольшой кусочек лука в стакан. Это для тестирования с базой. Залейте \ (\ text {5} \) \ (\ text {ml} \) основы. Помашите рукой над стаканом, чтобы выдувать воздух к носу.Что вы замечаете в запахе лука? Повторите то же самое с ванильной эссенцией.

  10. Наконец, поместите в стакан чайную ложку разрыхлителя. Осторожно налейте в стакан \ (\ text {5} \) \ (\ text {ml} \) кислоты. Запишите свои наблюдения. Повторите то же самое с базой.

Наблюдения

красная капуста

Вещество

Цвет

Результаты с кислотой

Результаты с щелочью 06 9106

Свекла

Ягоды

Карри порошок

9106

9016

Лук

Ванильная эссенция

Разрыхлитель

902 присутствие кислоты или основания.Разрыхлитель шипит, когда находится в растворе кислоты, но никакой реакции не наблюдается, когда он находится в растворе основания. Находясь в основе, эссенция ванили и лук должны потерять свой характерный запах.

Ваниль и лук известны как обонятельные индикаторы. Обонятельные индикаторы теряют характерный запах при смешивании с кислотами или основаниями.

Теперь мы рассмотрим три конкретных типа кислотно-основных реакций. В каждом из этих типов кислотно-основной реакции кислота остается той же, но меняется тип основания.Мы посмотрим, какие продукты образуются, когда кислоты реагируют с каждым из этих оснований, и как выглядит общая реакция.

Кислота и гидроксид металла (ESBQZ)

Когда кислота реагирует с гидроксидом металла, образуются соль и вода . Мы уже вкратце объяснили это. Вот несколько примеров:

  • \ (\ text {HCl (aq)} + \ text {NaOH (aq)} \ rightarrow \ text {H} _ {2} \ text {O (l)} + \ text {NaCl (aq)} \)
  • \ (2 \ text {HBr (aq)} + \ text {Mg (OH)} _ {2} \ text {(aq)} \ rightarrow 2 \ text {H} _ {2} \ text {O (l) } + \ text {MgBr} _ {2} \ text {(aq)} \)
  • \ (3 \ text {HCl (aq)} + \ text {Al (OH)} _ {3} \ text {(aq)} \ rightarrow 3 \ text {H} _ {2} \ text {O (l) } + \ text {AlCl} _ {3} \ text {(aq)} \)

Мы можем написать общее уравнение для этого типа реакции: \ [n \ text {H} ^ {+} \ text {(aq)} + \ text {M (OH)} _ {n} \ text {(aq)} \ rightarrow n \ text {H} _ {2 } \ text {O (l)} + \ text {M} ^ {n +} \ text {(aq)} \] Где \ (n \) - номер группы металла, а \ (\ text {M} \) - металл.

Присоединяйтесь к тысячам учащихся, улучшающих свои научные оценки онлайн с помощью Siyavula Practice.

Зарегистрируйтесь здесь

Упражнение 13.3

Напишите уравнение реакции между \ (\ text {HNO} _ {3} \) и \ (\ text {KOH} \).

\ (\ text {HNO} _ {3} \ text {(aq)} + \ text {KOH (aq)} \ rightarrow \ text {KNO} _ {3} \ text {(aq)} + \ text {H } _ {2} \ text {O (l)} \)

Кислота и оксид металлов (ESBR2)

Когда кислота реагирует с оксидом металла, также образуются соль и вода .Вот несколько примеров:

  • \ (2 \ text {HCl (aq)} + \ text {Na} _ {2} \ text {O (aq)} \ rightarrow \ text {H} _ {2} \ text {O (l)} + 2 \ текст {NaCl} \)
  • \ (2 \ text {HBr (aq)} + \ text {MgO} \ rightarrow \ text {H} _ {2} \ text {O (l)} + \ text {MgBr} _ {2} \ text {( водно)} \)
  • \ (6 \ text {HCl (aq)} + \ text {Al} _ {2} \ text {O} _ {3} \ text {(aq)} \ rightarrow 3 \ text {H} _ {2} \ текст {O (l)} + 2 \ text {AlCl} _ {3} \ text {(aq)} \)

Мы можем написать общее уравнение реакции оксида металла с кислотой: \ [2y \ text {H} ^ {+} \ text {(aq)} + \ text {M} _ {x} \ text {O} _ {y} \ text {(aq)} \ rightarrow y \ text {H} _ {2} \ text {O (l)} + x \ text {M} ^ {n +} \ text {(aq)} \] Где \ (n \) - номер группы металла.\ (X \) и \ (y \) представляют собой соотношение, в котором металл соединяется с оксидом, и зависит от валентности металла.

Присоединяйтесь к тысячам учащихся, улучшающих свои научные оценки онлайн с помощью Siyavula Practice.

Зарегистрируйтесь здесь

Упражнение 13.4

Напишите сбалансированное уравнение реакции между \ (\ text {HBr} \) и \ (\ text {K} _ {2} \ text {O} \).

\ (2 \ text {HBr (aq)} + \ text {K} _ {2} \ text {O (aq)} \ rightarrow 2 \ text {KBr (aq)} + \ text {H} _ {2} \ text {O (l)} \)

Кислота и карбонат металла (ESBR3)

Реакция кислот с карбонатами

Аппаратура и материалы

  • Небольшие количества разрыхлителя (бикарбонат натрия)
  • соляная кислота (разбавленная) и уксус
  • стенд реторт
  • две пробирки
  • одна резиновая пробка для пробирки
  • трубка подачи
  • известковая вода (гидроксид кальция в воде)

Эксперимент следует настроить, как показано ниже.

Метод

  1. Осторожно проденьте подающую трубку через резиновую пробку.

  2. Налейте известковую воду в одну из пробирок.

  3. Осторожно налейте небольшое количество соляной кислоты в другую пробирку.

  4. Добавьте к кислоте небольшое количество карбоната натрия и закройте пробирку резиновой пробкой.Поместите другой конец трубки подачи в пробирку с известковой водой.

  5. Посмотрите, что происходит с цветом известковой воды.

  6. Повторите вышеуказанные шаги, на этот раз используя уксус.

Наблюдения

Прозрачная известковая вода становится молочной, что означает образование углекислого газа. Вы можете не увидеть этого для соляной кислоты, поскольку реакция может происходить быстро.

Когда кислота реагирует с карбонатом металла, образуются соль , диоксид углерода и вода . Взгляните на следующие примеры:

  • Азотная кислота реагирует с карбонатом натрия с образованием нитрата натрия, диоксида углерода и воды.

    \ [2 \ text {HNO} _ {3} \ text {(aq)} + \ text {Na} _ {2} \ text {CO} _ {3} \ text {(aq)} \ rightarrow 2 \ текст {NaNO} _ {3} \ text {(aq)} + \ text {CO} _ {2} \ text {(g)} + \ text {H} _ {2} \ text {O (l)} \]

  • Серная кислота реагирует с карбонатом кальция с образованием сульфата кальция, диоксида углерода и воды.

    \ [\ text {H} _ {2} \ text {SO} _ {4} \ text {(aq)} + \ text {CaCO} _ {3} \ text {(aq)} \ rightarrow \ text { CaSO} _ {4} \ text {(s)} + \ text {CO} _ {2} \ text {(g)} + \ text {H} _ {2} \ text {O (l)} \]

  • Соляная кислота реагирует с карбонатом кальция с образованием хлорида кальция, диоксида углерода и воды.

    \ [2 \ text {HCl (aq)} + \ text {CaCO} _ {3} \ text {(s)} \ rightarrow \ text {CaCl} _ {2} \ text {(aq)} + \ text {CO} _ {2} \ text {(g)} + \ text {H} _ {2} \ text {O (l)} \]

Упражнение 13.5

Напишите сбалансированное уравнение реакции между \ (\ text {HCl} \) и \ (\ text {K} _ {2} \ text {CO} _ {3} \).

\ (2 \ text {HCl (aq)} + \ text {K} _ {2} \ text {CO} _ {3} \ text {(aq)} \ rightarrow 2 \ text {KCl (aq)} + \ текст {H} _ {2} \ text {O (l)} + \ text {CO} _ {2} \ text {(g)} \)

Используя то, что мы узнали о кислотах и ​​основаниях, мы теперь можем взглянуть на получение некоторых солей.

Приготовление солей

Цель

Для получения солей кислотно-основными реакциями.{-3} $} \)), серная кислота (разбавленная), гидроксид натрия, оксид меди (II), карбонат кальция

  • мензурки, измеритель массы, воронки, фильтровальная бумага, горелка Бунзена, мерные цилиндры

  • Метод

    При работе с серной кислотой надевайте перчатки и защитные очки. Работайте в хорошо вентилируемом помещении.

    Часть 1

    1. Отмерьте \ (\ text {20} \) \ (\ text {ml} \) соляной кислоты в стакан.
    2. Отмерьте \ (\ text {20} \) \ (\ text {ml} \) гидроксида натрия и осторожно добавьте его в стакан, содержащий соляную кислоту.
    3. Осторожно нагрейте полученный раствор, пока вся вода не испарится. У вас должен остаться белый порошок.

    Часть 2

    1. Осторожно добавьте \ (\ text {25} \) \ (\ text {ml} \) серной кислоты в чистый стакан.
    2. Добавьте примерно небольшое количество (примерно \ (\ text {0,5} \) \ (\ text {g} \)) оксида меди (II) в стакан с серной кислотой.Размешайте раствор.
    3. Когда весь оксид меди (II) растворится, добавьте еще небольшое количество оксида меди (II). Повторяйте, пока твердое вещество не перестанет растворяться и не останется небольшое количество нерастворенного твердого вещества.
    4. Отфильтруйте этот раствор и выбросьте фильтровальную бумагу.
    5. Осторожно нагрейте полученную жидкость. У вас должно получиться небольшое количество твердого вещества.

    Часть 3

    1. Отмерьте \ (\ text {20} \) \ (\ text {ml} \) соляной кислоты в новый стакан.
    2. Добавьте примерно небольшое количество (примерно \ (\ text {0,5} \) \ (\ text {g} \)) карбоната кальция в стакан, содержащий соляную кислоту. Размешайте раствор.
    3. Когда весь карбонат кальция растворится, добавьте еще небольшое количество карбоната кальция. Повторяйте, пока твердое вещество не перестанет растворяться и не останется небольшое количество нерастворенного твердого вещества.
    4. Отфильтруйте этот раствор и выбросьте фильтровальную бумагу.
    5. Осторожно нагрейте полученную жидкость. У вас должно получиться небольшое количество твердого вещества.

    Наблюдения

    В первой реакции (соляная кислота с гидроксидом натрия) полученный раствор был прозрачным. Когда этот раствор нагревали, было отмечено небольшое количество белого порошка. Это порошок хлорида натрия.

    Во второй реакции (серная кислота с оксидом меди (II)) полученный раствор имел синий цвет. Когда этот раствор нагревали, было отмечено небольшое количество белого порошка. Этот порошок - медный купорос.

    В третьей реакции (хлористоводородная кислота с карбонатом кальция) полученный раствор был прозрачным.Когда этот раствор нагревали, было отмечено небольшое количество белого порошка. Этот порошок - сульфат кальция.

    Попробуйте написать уравнения для трех приведенных выше реакций.

    Заключение

    Мы использовали кислотно-основные реакции для получения различных солей.

    Кислоты и основания

    Упражнение 13.6

    \ (\ text {HNO} _ {3} \) и \ (\ text {Ca} (\ text {OH}) _ {2} \)

    Кислота и гидроксид металлов

    \ (2 \ text {HNO} _ {3} \ text {(aq)} + \ text {Ca (OH)} _ {2} \ text {(aq)} \ rightarrow \ text {Ca (NO} _ {3} \ text {)} _ {2} \ text {(aq)} + 2 \ text {H} _ {2} \ text {O (l)} \)

    \ (\ text {HCl} \) и \ (\ text {BeO} \)

    Кислота и оксид металлов

    \ (2 \ text {HCl (aq)} + \ text {BeO (aq)} \ rightarrow \ text {BeCl} _ {2} \ text {(aq)} + \ text {H} _ {2} \ текст {O (l)} \)

    \ (\ text {HI} \) и \ (\ text {K} _ {2} \ text {CO} _ {3} \)

    Кислота и карбонат

    \ (2 \ text {HI (aq)} + \ text {K} _ {2} \ text {CO} _ {3} \ text {(aq)} \ rightarrow 2 \ text {KI (aq)} + \ text {H} _ {2} \ text {O (l)} + \ text {CO} _ {2} \ text {(g)} \)

    \ (\ text {H} _ {3} \ text {PO} _ {4} \) и \ (\ text {KOH} \)

    Кислота и гидроксид металлов

    \ (\ text {H} _ {3} \ text {PO} _ {4} \ text {(aq)} + 3 \ text {KOH (aq)} \ rightarrow \ text {K} _ {3} { PO} _ {4} \ text {(aq)} + 3 \ text {H} _ {2} \ text {O (l)} \)

    \ (\ text {HCl} \) и \ (\ text {MgCO} _ {3} \)

    Кислота и карбонат

    \ (2 \ text {HCl (aq)} + \ text {MgCO} _ {3} \ text {(aq)} \ rightarrow \ text {MgCl} _ {2} \ text {(aq)} + \ text {H} _ {2} \ text {O (l)} + \ text {CO} _ {2} \ text {(g)} \)

    \ (\ text {HNO} _ {3} \) и \ (\ text {Al} _ {2} \ text {O} _ {3} \)

    Кислота и оксид металлов

    \ (6 \ text {HNO} _ {3} \ text {(aq)} + \ text {Al} _ {2} \ text {O} _ {3} \ text {(aq)} \ rightarrow 2 \ текст {Al (NO} _ {3} \ text {)} _ {3} \ text {(aq)} + 3 \ text {H} _ {2} \ text {O (l)} \)

    ,

    Смотрите также