Подкисленный раствор перманганата калия


Жесткое окисление алкенов. Как записать уравнение?

Жесткое окисление алкенов в кислой среде

Данный процесс чаще всего осуществляют, действуя на алкены подкисленным раствором перманганата калия, либо дихромата калия. В качестве средообразователя всегда используют серную кислоту. При таком окислении происходит полный разрыв углеродного скелета по двойной связи, и в зависимости от особенностей строения продуктами окисления могут быть различные вещества. 

Давайте сначала разберемся с тем, какие углеродсодержащие продукты образуются при жестком окислении алкенов с различным строением. Представим, что у нас стоит задача определить продукты окисления для следующих двух веществ:

Обратите внимание, что углеродные атомы при двойной связи обозначены разными цветами. 

Атом углерода, выделенный красным цветом, является первичным, то есть связан только с одним другим атомом углерода.

Атом углерода, выделенный желтым цветом, является вторичным, то есть связан с двумя другими атомами углерода.

Атом углерода, выделенный зеленым цветом, является третичным, то есть связан с тремя другими атомами углерода.

Жесткое окисление подразумевает разрыв углеродного скелета по месту двойной связи:

Следует запомнить, что первичные атомы углерода (красные) при таком окислении переходят в углекислый газ.
Вторичные атомы углерода (желтые) переходят в состав карбоксильной группы (COOH),  то есть образуется карбоновая кислота.
Третичные атомы углерода(зеленые) переходят в состав карбонильной группы, то есть образуется кетон.

Теперь осталось разобраться с остальными продуктами реакции. Если в качестве окислителя используется сернокислый раствор перманганата калия, то продуктами будут также MnSO4, K2SO4 и H2O. Если же в качестве окислителя взяли сернокислый раствор дихромата калия, продуктами будут Cr2(SO4)3, K2SO4 и H2O.

Давайте разберем все эти случаи. Начнем с реакции пропена с сернокислым раствором перманганата калия.

Пропен + KMnO4 +H2SO4

Исходя из вышесказанного, запишем схему этой реакции:

Осталось расставить коэффициенты. Определим, какие атомы изменили степени окисления. В случае марганца ничего сложного нет: степень окисления его в перманганате была +7, стала равна +2. Также степени окисления меняют те атомы углерода, у которых изменилось окружение. В схеме эти атомы обозначены желтым и красным цветами. Определим степени окисления этих атомов методом блоков. Изолируем друг от друга фрагменты молекулы по углерод-углеродным связям следующим образом:

Далее, условно примем, что заряд каждого выделенного блока равен нулю (как у нейтральной молекулы). Степень окисления водорода в органических веществах всегда равна +1. Обозначим степени окисления «желтого» атома С как х, «красного» — как y:

Далее, учитывая, что заряд каждого блока мы приняли равным нулю, мы можем составить и решить два уравнения:

Аналогично рассчитаем степень окисления «желтого» атома углерода в уксусной кислоте и «красного» в молекуле углекислого газа, учитывая, что степень окисления кислорода в органических веществах всегда равна -2 (кроме органических пероксидов, изучение которых в не входит в программу ЕГЭ):

Далее, аналогично, составим и решим два уравнения, учитывая, что заряд выделенного блока мы приняли равным нулю, а заряд молекулы углекислого газа, как и у любой другой молекулы, также нейтрален.

Таким образом, «желтый» атом углерода имел степень окисления до реакции, равную -1, а после +3.

«Красный» атом углерода изменил свою степень окисления с -2, на +4.

Учитывая, что марганец изменил свою степень окисления с +7 на +2, еще раз запишем схему реакции и составим электронный баланс. «Желтый» и «красный» атомы углерода, очевидно, всегда будут в соотношении 1 к 1, независимо от коэффициента перед органическим веществом, потому запишем их в одной строчке «полуреакции» окисления.

Перенесем коэффициенты из баланса:

Поскольку в левой части схемы мы видим два атома калия, в правой части схемы перед сульфатом калия коэффициент 1, ставить который не нужно. В правой части уравнения мы видим 3 сульфатных остатка, поэтому ставим перед серной кислотой коэффициент 3:

Осталось поставить коэффициент перед водой в правой части. Это можно сделать по кислороду или водороду на выбор. Поскольку мы уравняли число сульфатных остатков в левой и правой частях, то кислород в них можно не учитывать. Считаем только кислород в остальных соединениях. Слева мы видим 8 атомов кислорода (не считая кислород в серной кислоте). В правой части не считая воду — 4 атома кислорода. Поэтому перед водой коэффициент будет равен 4:

Сравнивая количества всех элементов слева и справа, видим, что все коэффициенты расставлены верно.

2-метилпропен + KMnO4 + H2SO4

Аналогично предыдущему примеру рассчитаем степени окисления углеродных атомов, которые изменили свою степень окисления:

Учитывая, что заряд каждого выделенного блока мы приняли равным нулю, составим и решим уравнения:

Аналогично поступим с продуктами окисления:

составим и решим уравнения:

Таким образом, «зеленый» атом углерода до реакции имел степень окисления, равную 0, после +2, «красный» изменил свою степень окисления с -2 на +4.

Далее запишем схему окисления и составим электронный баланс:

Перенесем коэффициенты из электронного баланса в схему:

Далее мы видим, что в левой части схемы 8 атомов калия, потому перед сульфатом калия поставим коэффициент 4.

Теперь можно заметить, что в правой части уравнения 12 сульфатных групп (8 в сульфате марганца, 4 в сульфате калия). Поэтому перед серной кислотой в левой части нужно поставить коэффициент 12:

Осталось поставить коэффициент перед водой. Сделаем это по кислороду. Количество сульфатных групп мы уравняли, потому кислород в них можно не учитывать. Слева мы видим 32 атома кислорода (8*4). В правой части уравнения, не считая воды и сульфатных групп, 15 атомов кислорода (5 в молекуле кетона и 10 в 5 молекулах углекислого газа). Таким образом, перед водой необходимо поставить коэффициент 17.

Посчитав водород слева и справа, мы убеждаемся, что коэффициенты расставлены верно.

Пропен + K2Cr2O7 + H2SO4

Состав продуктов будет точно таким же, как и в случае окисления перманганатом, за исключением того, что вместо сульфата марганца (II) образуется сульфат хрома (III). Запишем схему реакции и составим электронный баланс.

Перенесем коэффициенты из баланса в схему:

Далее уравняем калий, поставив коэффициент 5 перед сульфатом калия:

В правой части мы видим 20 сульфатных групп. Следовательно, перед формулой серной кислоты нужно поставить коэффициент 20:

Осталось поставить последний коэффициент перед формулой воды. Сделаем это, как и в двух предыдущих случаях, по кислороду, не считая кислород в сульфатных группах, поскольку их количества уравнены. В левой части мы видим 35 атомов кислорода. В правой части, не считая воды, 12 атомов кислорода (6 в трех молекулах CH3COOH и 6 в трех молекулах CO2). Таким образом, перед формулой воды нужно поставить коэффициент 23:

Посчитав водород слева и справа, мы убеждаемся, что коэффициенты расставлены верно.

2-метилпропен + K2Cr2O7 + H2SO4

Запишем схему реакции и электронный баланс:

Перенесем коэффициенты из баланса в схему:

Перед сульфатом калия поставим коэффициент 4, чтобы уравнять количества атомов калия в левой и правой частях схемы:

Перед серной кислотой поставим коэффициент 16, чтобы уравнять количество сульфатных групп:

Последний коэффициент перед водой поставим по кислороду, игнорируя сульфатные группы, поскольку их количество уравнено. Слева мы видим 28 атомов кислорода. Справа, не считая воды, 9 атомов кислорода. Таким образом, перед водой необходимо поставить коэффициент 19.

Далее, подсчитав водород в обеих частях уравнения, убеждаемся, что коэффициенты расставлены верно.

Проба с подкисленным раствором перманганата калия     Аликвоту смеси муравьиной и уксусной кислоты объемом 20,00 мл оттитровали 0,1209 Р раствором гидроксида натрия при этом для достижения конечной точки титрования по фенолфталеину потребовалось 23,12 мл титранта. Вторую пробу смеси кислот объемом 20,00 мл прибавили к 50,00 мл 0,02832 Р сильнощелочного раствора перманганата калия реакционную смесь оставили на 30 мин при комнатной температуре. Затем раствор подкислили серной кислотой и оттитровали стандартным 0,1976 Р раствором железа(П). Для титрования потребовалось 28,51 мл раствора железа(П). Рассчитайте формульные концентрации муравьиной и уксусной кислот в исходной смеси. [c.356]
    Если раствор перманганата калия КМПО4 малинового цвета подкислить серной кислотой и к полученному раствору прилить раствор сульфата закисного железа Ре304, то раствор обесцветится. Легко обнаружить появление в растворе ионов Ре +, прилив к отдельной пробе несколько капель раствора желтой кровяной соли К4[Ре(СЫ)б]—появление густо-синего окрашивания явится прямым доказательством наличия ионов Ре +. Ионы Ре + образовались пз ионов Ре- +, потеряв по 1 электрону. Следовательно, ионы Ре-+ являются восстановителями  [c.374]

    Для определения брома пробу, обработанную описанным выше методом, подкисляют разбавленной азотной кислотой, избыток бисульфита окисляют 1-процентным раствором перманганата калия и определяют галоид методом Фольгарда или другим методом. Отношение обычно колеблется от 1,97 до 2,02. [c.67]

    Количество глицерина в растворе пробы определили по реакции с 50,00 мл 0,03527 Р сильнощелочного раствора перманганата калия при комнатной температуре в течение 25 мин. После окончания реакции смесь подкислили серной кислотой и избыток непрореагировавшего перманганата восстановили 10,00 мл 0,2500 Р раствора щавелевой кислоты. Затем избыток щавелевой кислоты титровали 0,01488 Р раствором перманганата калия, на что потребовалось 26,18 мл. Рассчитайте массу глицерина а исходной пробе. [c.356]

    Пробу объемом 0,5— л, в зависимости от содержания молибдена, установленного предварительным полуколичественным определением, помещают в делительную воронку, подкисляют 1 мл НС1 (2 1). добавляют 8—12 капель 3%-ного раствора перманганата калия и оставляют стоять около 1 часа для окисления органических веществ и других примесей. В случае посветления раствора количество добавляемого перманганата необходимо увеличить до восстановления окраски раствора. После этого производят соосаждение молибдена с гидратом двуокиси марганца путем прибавления 3—4 капель З. о-ного раствора перекиси водорода до перехода окраски раствора из фиолетово-розовой в бурую. Раствор оставляют стоять 8—10 час. (обычно на ночь) для коагуляции МпО(ОН)2 и выпадения его в осадок. [c.54]

    Пробы пищевых продуктов, рыбы и других биологических материалов разлагают смесью серной кислоты с перманганатом калия [5.14001 к этой смеси можно добавить азотную кислоту [5.1401]. Для предотвращения потерь ртути смесь нагревают не выше 50—60 °С или кипятят с обратным холодильником. Ртуть из почвы извлекают смесью азотной, серной кислот и перманганата калия [5.1402]. Питьевую или сточную воду подкисляют 10 мл серной кислоты (1 1), добавляют на 1 л пробы 5 мл 2%-ного раствора перманганата калия и выдерживают 24 ч при комнатной температуре [5.1403] или нагревают с азотной кислотой и перманганатом калия в закрытой толстостенной колбе 2 ч на водяной бане [5.1404]. [c.230]


    Пробу отвешивают с точностью 0,0002 г, соответствующую содержанию примерно 0,2 г чистой перекисной соли, растворяют ее в 100 мл дистиллированной воды, подкисляют 20 мл серной кислоты (1 4) и медленно по каплям титруют 0,1 н. раствором перманганата калия до не исчезающей приблизительно в течение I мин розовой окраски раствора. [c.381]

    Растворяют 1 г миндальной кислоты в смеси 3 мл 10%-ного раствора едкого натра и 15 мл воды, добавляют 150 г колотого льда отмеряют 73 мл 1%-ного раствора перманганата калия и приливают несколько миллилитров этого раствора в ледяной раствор кислоты. После исчезновения окраски вливают остаток перманганата, перемешивают и оставляют смесь на ночь. Затем делают пробу на присутствие избытка перманганата и, если таковой имеется, разрушают его добавлением небольшого количества (0,01 г) бисульфита натрия (проверяют капельной пробой). Выпавшую двуокись марганца отделяют на воронке Бюхнера, первые порции раствора, если они не прозрачны, фильтруют вторично. Раствор слабо подкисляют соляной кислотой ло лакмусу и приливают раствор 1 г хлоргидрата фенилгидразина в небольшом количестве горячей воды. Нагревают 15 мин. почти при температуре кипения, охлаждают и отделяют кристаллический желтый фенилгидразон выход 1 г, т. пл. 159 " с разложением (выделение СОг). [c.236]

    Пробу железной руды массой 3,156 г поместили в химический стакан, накрытый покровным часовым стеклом, и обработали при нагревании 100 см соляной кислоты. По окончании реакции раствор количественно перенесли в колбу емкостью 250 см= и разбавили дистиллированной водой до метки. Из колбы пипеткой объемом 25,00 см отобрали пробу, перенесли ее в коническую колбу, слегка подкислили соляной кислотой и по каплям добавили раствор Sn la до обесцвечивания раствора, затем добавили туда 1 см раствора Hg la, что вызвало выпадение белого шелковистого осадка. На титрование подготовленной таким образом пробы до появления бледно-розового окрашивания израсходовали 28,35 см 0,1050 н. раствора перманганата калия. [c.136]

    Реакция с перманганатом. 1—2 капли 1,0—0,1-процентного раствора дезинфицирующего средства подкисляют 1 каплей 10-процентной серной кислоты и добавляют 1 мл хлороформа. Затем по каплям приливают 0,1-про-цептный раствор перманганата калия в таком количестве, чтобы водный слой даже при встряхивании оставался окрашенным в фио,летовый цвет. Если в растворе присутствовали четвертичные аммониевые основания указанных выше гипов, то хлороформный слой окрашивается в отчетливый фиолетово-красный цвет. Чувствителыюсть реакции для цефироля 1 10000. С ко дан-тинктурой проба удается только после предварительного извлечения петролейным эфиром. [c.167]

    Определение методом пипетирования. Рассчитанную навеску (см. гл. I, 10) щавелевой кислоты или оксалата взвешивают в бюксе или на часовом стекле сначала на технических весах, а затем — яа аналитических. Величину навески огтределяют по разности двух взвешиваний бюкса до и иосле взятия навески. Взятую навеску пересыпают в мерную колбу и растворяют. ТеХ НИ1ка работы с мерными колбами описана в гл. I, 6. Для титрования берут аликвотные порции раствора в конические колбы. Взятые пробы подкисляют серной кислотой, нагревают до 70—80° и титруют перманганатом калия до слаборозового окрашивания. [c.237]

    Открытие бензильной группы. Обрабатывают 2—3 г пробы 8—10 мл уксусного ангидрида и добавляют несколько капель концентрированной серной кисл

алкенов и марганата калия (VII) (перманганат)

Если продукт имеет одну углеводородную группу и один водород

Например, предположим, что первая стадия реакции была:

В этом случае первая молекула продукта имеет метильную группу и водород, присоединенный к карбонильная группа. Это другой вид соединения, известного как альдегид.

Альдегиды легко окисляются с образованием карбоновых кислот, содержащих группу -COOH.Поэтому на этот раз реакция пойдет на следующую стадию с получением этановой кислоты, CH 3 COOH.

Кислотная структура была немного перевернута, чтобы она больше походила на то, как мы обычно рисуем кислоты, но общий эффект заключается в том, что между углеродом и водородом образовался кислород.

Общее влияние манганата калия (VII) на этот вид алкена составляет:

Очевидно, что если бы атом водорода был присоединен к обоим углеродам на концах углерод-углеродной двойной связи, вы бы получили две молекулы карбоновой кислоты, которые могут быть одинаковыми или разными, в зависимости от того, были ли одинаковые алкильные группы или разные.

Поиграйте с этим, пока вы не будете довольны этим. Нарисуйте несколько алкенов, каждый из которых имеет водород, присоединенный на обоих концах углерод-углеродной двойной связи. Различные алкильные группы - иногда одинаковые на каждом конце двойной связи, иногда разные. Окислите их, чтобы сформировать кислоты, и посмотрите, что вы получите.

Если продукт имеет два атома водорода, но не содержит углеводородной группы

Вы могли ожидать, что это произведет метановую кислоту, как в уравнении:

Но это не так! Это потому, что метановая кислота также легко окисляется раствором калия манганата (VII).На самом деле, он окисляет все это вплоть до углекислого газа и воды.

Таким образом, уравнение в таком случае может быть, например:

Точная природа другого продукта (в этом примере, пропанона) будет варьироваться в зависимости от того, что было присоединено к правому углероду в двойной связи углерод-углерод.

Если бы на обоих концах двойной связи было два атома водорода (другими словами, если бы у вас был этен), то все, что вы получили бы, - это углекислый газ и вода.

 

Резюме

Подумайте об обоих концах углерод-углеродной двойной связи по отдельности, а затем объедините результаты.

  • Если на одном конце связи две алкильные группы, эта часть молекулы даст кетон.

  • Если есть одна алкильная группа и один водород на одном конце связи, эта часть молекулы даст карбоновую кислоту.

  • Если на одном конце связи находятся два атома водорода, эта часть молекулы даст углекислый газ и воду.

 

Какой смысл всего этого?

Возвращение к результатам поможет вам определить структуру алкена. Например, алкен C 4 H 8 имеет три структурных изомера:

Подумайте, какие из них дадут каждый из следующих результатов, если их обработать горячим концентрированным раствором манганата калия (VII). Приведенные выше изомеры представляют собой , , а не , в порядке A, B и C.

Не читайте ответы в зеленой рамке, пока не попробуете.

  • Изомер А дает кетон (пропанон) и диоксид углерода.

  • Изомер B дает карбоновую кислоту (пропановую кислоту) и диоксид углерода.

  • Изомер C дает карбоновую кислоту (этановую кислоту).

Окисление алкенов марганатом калия

Углерод-углеродные двойные связи в алкенах, таких как этен, реагируют с раствором марганата калия (VII) (раствор перманганата калия).

Окисление алкенов холодным разбавленным раствором манганата калия (VII)

Алкены реагируют с раствором манганата калия (VII) на холоде. Изменение цвета зависит от того, используется ли марганат калия (VII) в кислотных или щелочных условиях.

  • Если раствор манганата калия (VII) подкисляют разбавленной серной кислотой, фиолетовый раствор становится бесцветным.
  • Если раствор манганата калия (VII) становится слабощелочным (часто путем добавления раствора карбоната натрия), пурпурный раствор сначала становится темно-зеленым, а затем образует темно-коричневый осадок.

Химия реакции

Посмотрим на реакцию с этеном. Другие алкены реагируют точно так же. Ионы манганата (VII) являются сильным окислителем и в первую очередь окисляют этен до этан-1,2-диола (старое название: этиленгликоль). Глядя на уравнение чисто с точки зрения органической реакции:

Этот тип уравнения довольно часто используется в органической химии.Кислород, указанный в квадратных скобках, означает «кислород от окислителя». Причина этого в том, что более нормальное уравнение имеет тенденцию затенять органические изменения в массе других деталей - как вы увидите ниже!

Полное уравнение зависит от условий.

  • В кислых условиях ионы манганата (VII) восстанавливаются до ионов марганца (II).

  • В щелочных условиях ионы манганата (VII) сначала восстанавливаются до ионов зеленого манганата (VI)., ,

, , и затем далее до темно-коричневого твердого оксида марганца (IV) (диоксид марганца).

Эта последняя реакция также та, которую вы получили бы, если бы реакция проводилась в нейтральных условиях. Вы заметите, что в левой части уравнения нет ни ионов водорода, ни гидроксид-ионов.

Возможно, вы помните, что далее на странице написано, что манганат калия (VII) часто делается слегка щелочным путем добавления раствора карбоната натрия.- \]

Именно присутствие этих гидроксид-ионов дает раствору карбоната натрия его pH в области 10 - 11.

Использование реакции для проверки двойных связей углерод-углерод

Если органическое соединение реагирует с разбавленным щелочным раствором манганата калия (VII) на холоде с образованием зеленого раствора с последующим выпадением темно-коричневого осадка, то оно может содержать углерод-углеродную двойную связь. Но в равной степени это может быть любое из большого числа других соединений, все из которых могут окисляться ионами манганата (VII) в щелочных условиях.

Ситуация с подкисленным раствором манганата калия (VII) еще хуже, поскольку он имеет тенденцию разрушать углерод-углеродные связи. Он разрушительно реагирует с большим количеством органических соединений и редко используется в органической химии.

Вы можете использовать щелочной раствор калия-манганата (VII), если, например, все, что вам нужно было сделать, это выяснить, является ли углеводород алканом или алкеном - другими словами, если бы не было ничего, что могло бы окислиться.Это не полезный тест. Бромная вода гораздо прозрачнее.

Окисление алкенов горячим концентрированным подкисленным раствором манганата калия (VII)

Диолы, такие как этан-1,2-диол, которые являются продуктами реакции с холодным разбавленным манганатом калия (VII), сами по себе довольно легко окисляются ионами манганата (VII). Это означает, что реакция не остановит p в этот момент, если раствор манганата калия (VII) не очень разбавлен, очень холоден и предпочтительно не в кислых условиях.Если вы используете горячий концентрированный подкисленный раствор манганата калия (VII), то, что вы в конечном итоге получите, зависит от расположения групп вокруг углерод-углеродной двойной связи.

Приведенная ниже формула представляет собой общий алкен. В органической химии символ R используется для обозначения углеводородных групп или водорода в формуле, когда вы не хотите говорить о конкретных соединениях. Если вы используете символ более одного раза в формуле (как здесь), различные группы записываются как R 1 , R 2 и т. Д.

В этом конкретном случае двойная связь окружена четырьмя такими группами, и они могут представлять собой любую комбинацию из одинаковых или разных - таким образом, это могут быть 2 атома водорода, метил и этил, или 1 водород и 3 метила, или 1 водород и 1 метил и 1 этил и 1 пропил, или любую другую комбинацию, о которой вы только можете подумать. Другими словами, эта формула представляет все возможные простые алкены:

Первая стадия расширенного окисления

Подкисленный раствор манганата калия (VII) окисляет алкен, разрушая двойную углерод-углеродную связь и заменяя ее двумя двойными углерод-кислородными связями.

Продукты известны как карбонильные соединения , потому что они содержат карбонильную группу, C = O. Карбонильные соединения могут также реагировать с манганатом калия (VII), но то, как они реагируют, зависит от того, что связано с двойной связью углерод-кислород. Поэтому нам нужно проработать все возможные комбинации.

Если обе присоединенные R группы в продуктах являются алкильными группами

Карбонильные соединения, которые имеют две углеводородные группы, присоединенные к карбонильной группе, называют кетонами.Кетоны не так легко окисляются, и поэтому никаких дальнейших действий не происходит. (Но см. Примечание красного цвета ниже.) Если бы группы, присоединенные с обеих сторон исходной двойной связи углерод-углерод, были одинаковыми, то в итоге вы бы получили один кетон. Если бы они были разные, то в итоге вы бы получили смесь из двух. Например:

В этом случае у вас получатся две идентичные молекулы, называемые пропаноном. С другой стороны, если бы одна из метильных групп в исходной молекуле была заменена этильной группой, вы бы получили смесь двух разных кетонов - пропанона и бутанона.

Что бы вы получили, если бы с обеих сторон исходной углерод-углеродной двойной связи были метильная и этильная группы? Опять же, вы получите один кетон - в данном случае бутанон. Если вы не уверены в этом, нарисуйте структуры и посмотрите.

Этот последний раздел является чрезмерным упрощением. На практике кетоны окисляются раствором манганата калия (VII) в этих условиях. Реакция неопрятна и приводит к разрыву углерод-углеродных связей с обеих сторон карбонильной группы.Манганат калия (VII) является таким разрушительным окислителем, что его редко используют в органической химии.

Если продукт имеет одну углеводородную группу и один водород

Например, предположим, что первая стадия реакции была:

В этом случае молекула первого продукта имеет метильную группу и водород, присоединенный к карбонильной группе. Это другой вид соединения, известного как альдегид. Альдегиды легко окисляются с образованием карбоновых кислот, содержащих группу -COOH.Таким образом, на этот раз реакция пойдет на следующую стадию с получением этановой кислоты, CH 3 COOH.

.Перманганат калия
- Простая английская Википедия, свободная энциклопедия

Перманганат калия является неорганическим химическим соединением. Его химическая формула KMnO 4 . Содержит ионы калия и перманганата. Марганец находится в степени окисления +7. Он также известен как перманганат калия и кристаллы Конди . Перманганат калия является сильным окислителем, что означает, что он имеет тенденцию поглощать электроны из других химических веществ.Растворяется в воде, давая пурпурные растворы. Если он испаряется, то получается пурпурно-черные блестящие кристаллы. [2] Имеет сладкий вкус и без запаха. [1]

В 1659 году немецкий химик Иоганн Рудольф Глаубер расплавил смесь минерального пиролузита и карбоната калия, чтобы получить материал, который превращался в зеленый раствор (марганат калия) при растворении в воде. Он медленно изменял цвет на фиолетовый ( перманганат калия ) и затем, наконец, красный.Этот отчет является первым описанием производства перманганата калия.

Чуть менее 200 лет спустя лондонец по имени Генри Боллманн Конди был химиком. Он интересовался дезинфицирующими средствами и делал такие вещи, как озонированная вода . Он обнаружил, что когда он плавил пиролузит с помощью гидроксида натрия и растворял его в воде, он получал раствор с хорошими дезинфицирующими свойствами. Он запатентовал это решение и продал его как Condy's Fluid . Проблема заключалась в том, что решение было не очень стабильным.Это было исправлено с помощью гидроксида калия, а не гидроксида натрия. Это дало более стабильный материал. Его также можно было высушить до такого же хорошего порошка перманганата калия. Этот порошок назывался кристаллами Конди или порошком Конди . Производить перманганат калия было легко, поэтому Конди пытался помешать другим людям делать это и продавать его самостоятельно.

Ранние фотографы использовали его во флэш-порошке.

Химическое применение [изменить | изменить источник]

Перманганат калия используется в качестве окислителя. [3] Он также используется в дезинфицирующих средствах и в дезодораторах. Он может быть использован для изготовления различных химикатов. При очистке сточных вод он используется для избавления от сероводорода, вонючего токсичного газа. В аналитической химии точная концентрация KMnO 4 иногда используется для определения количества определенного восстановителя в титровании. Аналогичным образом он используется в качестве реагента для древесной массы. Смешивание перманганата калия и формальдегида дает мягкий слезоточивый газ.

В качестве окислителя в органическом синтезе [изменить | изменить источник]

Разбавленные растворы KMnO 4 превращают алкены в диолы (гликоли). Это поведение также используется в качестве качественного теста на наличие двойных или тройных связей в молекуле, поскольку реакция делает раствор перманганата бесцветным. Иногда его называют реагентом Байера.

Концентрированные растворы окисляют метильную группу в ароматическом кольце, например, от толуола до бензойной кислоты.

KMnO 4 окисляет гидрохлорид псевдоэфедрина с образованием меткатинона, препарата Списка I в Соединенных Штатах.Следовательно, DEA ограничило его использование и продажу, классифицируя его как прекурсор, контролируемый Списком I. Перманганат калия включен в Таблицу I в качестве прекурсора в соответствии с Конвенцией Организации Объединенных Наций о борьбе против незаконного оборота наркотических средств и психотропных веществ. [2]

Кислоты и перманганат калия [изменить | изменить источник]

Концентрированная серная кислота реагирует с перманганатом калия с образованием оксида марганца (VII), который может быть взрывоопасным. [4] [5] [6] .Эта реакция также вызывает озон. Озон может воспламенить бумагу, пропитанную спиртом. Эта реакция очень опасна.

6 KMnO 4 + 9 H 2 SO 4 → 6 MnSO 4 + 3 K 2 SO 4 + 9 H 2 O + 5 O 3

Сконцентрировано HCl производит хлор.

2 KMnO 4 + 16 HCl → 2 MnCl 2 + 2 KCl + 8 H 2 O + 5 Cl 2

Mn-содержащие продукты окислительно-восстановительных реакций зависят от pH.Кислые растворы перманганата восстанавливаются до слабо розового иона Mn 2+ , как в хлориде марганца (II). В нейтральном растворе перманганат восстанавливается до коричневого оксида марганца (IV), где Mn находится в степени окисления +4. Оксид марганца (IV) - это вещество, которое окрашивает кожу при нанесении на нее перманганата калия. Перманганат калия самопроизвольно восстанавливается в основном растворе до зеленого марганата калия, где марганец находится в степени окисления +6.

Биомедицинское использование [изменить | изменить источник]

  • Разбавленные растворы используются для лечения раковых язв (язв) (0.25%), дезинфицирующее средство для рук (около 1%) и лечение легкого помфоликс дерматита или грибковых инфекций рук или ног.
  • Разбавленный раствор подкисленного перманганата калия используется в гистологии для отбеливания меланина, который затемняет детали ткани.
  • Перманганат калия может быть использован для дифференциации амилоида АА от других типов амилоида, патологически депонированного в тканях организма. Инкубация фиксированной ткани с перманганатом калия предотвратит окрашивание амилоида АА конго красным, тогда как другие типы амилоида не пострадают. [7] [8]

Разное использование [изменить | изменить источник]

Растворенный перманганат калия
  • Решения KMnO 4 использовались вместе с 80% перекисью водорода для приведения ракеты в движение. В этом использовании он назывался Z-Stoff. Этот пропеллент до сих пор используется в торпедах.
  • Разбавленный (10 мг / л) перманганат калия можно использовать для уничтожения улиток из растений до помещения их в пресноводный аквариум.
  • Высококачественный перманганат калия можно найти в магазинах у бассейна и используется в сельской местности для удаления железа и сероводорода (запах тухлых яиц) из колодезной воды.
  • KMnO 4 часто включается в наборы для выживания вместе с глицерином или таблеткой глюкозы для разжигания огня. Таблетку с глюкозой можно растереть, смешать с перманганатом калия, и она будет гореть, если ее потереть. Это может также быть смешано с антифризом от транспортного средства, чтобы сделать огонь. Это может быть опасно и должно быть сделано осторожно, окунув немного бумаги в антифриз и добавив небольшое количество перманганата калия. Он также может стерилизовать воду и раны, поэтому он полезен в комплекте для выживания.
  • KMnO 4 используется для лечения некоторых паразитарных заболеваний рыб, при обработке питьевой воды, а также в качестве противоядия при отравлении фосфором. В Африке его использовали в качестве дезинфицирующего средства для овощей, таких как салат.

Твердый перманганат калия является сильным окислителем, и в целом его следует хранить отдельно от восстановителей. Для некоторых реакций нужно немного воды. Например, порошкообразный перманганат калия и сахарная пудра будут воспламеняться (но не взрываться) через несколько секунд после добавления капли воды. Wright JR, Calkins E, Humphrey RL. Лабораторное исследование . 1977 март; 36 (3): 274-81. PMID 839739 ,


Смотрите также