Положение калия в периодической системе и строение его атомов


Характеристика калия

Характеристика калия

Калий (K) располагается в 4 периоде, в I группе, главной подгруппе, имеет порядковый номер 19.

Массовое число: A = 39
Число протонов: P = 19
Число электронов: ē = 19
Число нейтронов: N = A - Z = 39 - 19 = 20

19K 1s2 2s2 2p6 3s2 3p6 4s1

Валентные электроны

Калий – s-элемент, металл.

Степени окисления
минимальная: 0
максимальная: +1

Высший оксид: K2O – оксид калия.
Проявляет основные свойства:
K2O + 2HCl ⟶ 2KCl + H2O

Высший гидроксид: KOH – гидроксид калия.
Проявляет основные свойства:
2KOH + 2HCl ⟶ 2KCl + 2H2O

электронные структуры атомов

ЭЛЕКТРОННЫЕ КОНСТРУКЦИИ

 

На этой странице рассказывается, как писать электронные структуры атомов, используя обозначения s, p и d. Предполагается, что вы знаете о простых атомных орбиталях - по крайней мере, в том, как они названы, и их относительные энергии. Если вы хотите изучить электронные структуры простых одноатомных ионов (таких как Cl - , Ca 2+ и Cr 3+ ), вы найдете ссылку внизу страницы.


Важно! Если вы еще не читали страницу об атомных орбиталях, вам следует перейти по этой ссылке, прежде чем идти дальше.


Электронное строение атомов

Связь орбитального заполнения с Периодической таблицей


Примечание: На некоторых экранах V для ванадия (элемент 23) может немного выглядеть как Y.Это не ошибка, а результат преобразования моей исходной диаграммы в изображение в формате gif более низкого качества для эффективного использования в Интернете.


UK учебных программ для 16-18-летних, как правило, останавливаются на криптоне, когда дело доходит до написания электронных структур, но возможно, что вас могут попросить структуры для элементов вплоть до бария. После бария вам нужно беспокоиться о f-орбиталях, а также о s, p и d-орбиталях - и это проблема химии на более высоком уровне.Важно, чтобы вы просматривали прошлые экзаменационные работы, а также свою программу, чтобы вы могли оценить, насколько сложными могут быть вопросы.

На этой странице подробно рассматриваются элементы в сокращенной версии Периодической таблицы, приведенной выше, а затем показано, как вы могли бы разработать структуры некоторых более крупных атомов.


Важно! У вас должна быть копия программы и копии недавних экзаменационных работ. Если вы изучаете учебную программу в Великобритании и у вас ее нет, перейдите по этой ссылке, чтобы узнать, как их получить.


Первый период

Водород имеет единственный электрон на орбите 1s - 1s 1 , а у гелия первый уровень полностью заполнен - ​​ 1s 2 .

Второй период

Теперь нам нужно начать заполнение второго уровня, а значит, начать второй период. Электрон лития переходит на 2s-орбиталь, потому что он имеет меньшую энергию, чем 2p-орбитали.Литий имеет электронную структуру 1s 2 2s 1 . Бериллий добавляет к этому же уровню второй электрон - 1s 2 2s 2 .

Теперь начинают заполняться 2p уровни. Все эти уровни имеют одинаковую энергию, поэтому электроны сначала входят поодиночке.

9000 9
B 1s 2 2s 2 2p x 1
C 1s 2 2s 2 2p x

2 1 2p y 1

N 1s 2 2s 2 2p x 1 2p y 1 2p z 1

Примечание: Орбитали, на которых происходит что-то новое, выделены жирным шрифтом.Обычно вы не записываете их иначе, чем другие орбитали.


Следующие электроны, которые войдут внутрь, должны будут образовать пары с уже существующими.

1 2 2s 2 2p x 2 2p y 2 2p z 1
O 1s 2 2s 2 2p x 2 2p y 1 2p z 1
F
Ne 1s 2 2s 2 9 2p x 2 2p y 2 2p z 2

Вы можете видеть, что писать полные электронные структуры атомов по мере увеличения числа электронов становится все более утомительно.Есть два способа обойти это, и вы должны знать оба.

Shortcut 1: Все различные p-электроны могут быть объединены в одну группу. Например, фтор можно записать как 1s 2 2s 2 2p 5 , а неон - как 1s 2 2s 2 2p 6 .

Это то, что обычно происходит, если электроны находятся во внутреннем слое. Если электроны находятся на уровне связи (те, которые находятся за пределами атома), они иногда записываются сокращенно, иногда полностью.Не беспокойся об этом. Будьте готовы встретиться с любой версией, но если вас спросят об электронной структуре чего-либо на экзамене, запишите ее полностью, показывая все орбитали p x , p y и p z на внешнем уровне отдельно. .

Например, хотя мы еще не встречали электронную структуру хлора, вы могли бы записать ее как 1s 2 2s 2 2p 6 3s 2 3p x 2 3p y 2 3p z 1 .

Обратите внимание, что все 2p-электроны сгруппированы вместе, а 3p-электроны показаны полностью. Логика такова, что 3p-электроны будут участвовать в связывании, потому что они находятся вне атома, тогда как 2p-электроны похоронены глубоко в атоме и на самом деле не представляют интереса.

Shortcut 2: Вы можете объединить всех внутренних электронов вместе, используя, например, символ [Ne]. В этом контексте [Ne] означает электронная структура неона - другими словами: 1s 2 2s 2 2p x 2 2p y 2 2p z 2 You не будет делать этого с гелием, потому что для записи [He] требуется больше времени, чем для 1s 2 .

На этом основании структура хлора будет записана [Ne] 3s 2 3p x 2 3p y 2 3p z 1 .

Третий период

У неона все орбитали второго уровня заполнены, поэтому после этого мы должны начать третий период с натрием. Схема заполнения теперь точно такая же, как и в предыдущем периоде, за исключением того, что теперь все происходит на 3-м уровне.

Например:


Примечание: Убедитесь, что вы можете это сделать. Закройте текст, а затем разработайте эти структуры для себя. Затем проделайте все остальное в этот период. Когда вы закончите, сравните свои ответы с соответствующими элементами предыдущего периода. Ваши ответы должны быть такими же, за исключением следующего уровня.


Начало четвертого периода

На данный момент не все трехуровневые орбитали заполнены - трехмерные уровни еще не использовались.Но если вы вернетесь к энергиям орбиталей, вы увидите, что следующая самая низкая энергетическая орбиталь - это 4s, так что она заполняется следующей.

K 1s 2 2s 2 2p 6 3s 2 3p 6 4s 1
Ca 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2

Есть убедительные доказательства этого в сходстве химии таких элементов, как натрий (1s 2 2s 2 2p 6 3s 1 ) и калий (1s 2 2s 2 2p 6 3s 2 3p 6 4s 1 )

Внешний электрон управляет их свойствами, и этот электрон находится на одной и той же орбитали в обоих элементах.Это было бы не так, если бы внешний электрон в калии был 3d 1 .

s- и p-блочные элементы

Все элементы группы 1 Периодической таблицы имеют внешнюю электронную структуру нс 1 (где n - число от 2 до 7). Все элементы группы 2 имеют внешнюю электронную структуру ns 2 . Элементы в группах 1 и 2 описываются как элементы s-блока.

Элементы из группы 3 (группа бора) и благородных газов имеют внешние электроны на p-орбиталях.Затем они описываются как p-блочные элементы.


Примечание: Если вы используете текущую систему IUPAC (Международный союз теоретической и прикладной химии) для групповой нумерации, вы, вероятно, будете знать, что я называю Группой 3 как Группой 13. Мои причины не использовать систему IUPAC обсуждаются здесь. в разделе "Вопросы и комментарии".


элементы d-блока

Мы разрабатываем электронные структуры атомов, используя принцип Aufbau («наращивание»).Итак, мы получили кальций со структурой 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 .

Уровень 4s теперь заполнен, и структуры следующих атомов показывают, что электроны постепенно заполняют 3-й уровень. Они известны как элементы d-блока.

После заполнения трехмерных орбиталей следующие электроны переходят на 4р-орбитали, как и следовало ожидать.

элементов d-блока - это элементы, в которых последний электрон, добавляемый к атому с использованием принципа Ауфбау, находится на d-орбитали.

Первая серия содержит элементы от скандия до цинка, которые на GCSE вы, вероятно, назвали переходными элементами или переходными металлами. Термины «элемент перехода» и «элемент d-блока» не имеют одинакового значения, но в данном контексте это не имеет значения.


Если вас интересует: Переходный элемент определяется как элемент, который имеет частично заполненных d-орбиталей либо в элементе, либо в любом из его соединений.Цинк (в правом конце d-блока) всегда имеет полностью полный 3-й уровень (3d 10 ) и поэтому не считается переходным элементом.

Некоторые учебные программы Великобритании используют более ограничительное определение, которое определяет переходный металл как металл, который имеет один или несколько стабильных ионов с частично заполненными d-орбиталями. Вам не нужно беспокоиться об этом, пока вы не изучите химию переходных металлов.



d-электронов почти всегда описываются как, например, d 5 или d 8 , а не записываются как отдельные орбитали.Помните, что существует пять d-орбиталей, и электроны будут населять их поодиночке, насколько это возможно. До 5 электронов самостоятельно займут орбитали. После этого им придется разделиться на пары.

d 5 означает

d 8 означает

Обратите внимание, что все трехуровневые орбитали записываются вместе - 4s-электроны записываются в конце электронной структуры.

Sc 1s 2 2s 2 2p 6 3s 2 3p 6 3d 1 4s 2
Ti 1s 2 2s 2 2p 6 3s 2 3p 6 3d 2 4s 2
V 1s 2 2s 2 2p 6 3s 2 3p 6 3d 3 4s 2
Cr 1s 2 2s 2 2p 6 3s 2 3p 6 3d 5 1

Ой! Хром нарушает последовательность.В хроме электроны на 3d- и 4s-орбиталях перестраиваются так, что на каждой орбитали находится по одному электрону. Было бы удобно, если бы последовательность была аккуратной - но это не так!

А у цинка процесс заполнения d-орбиталей завершен.

Заполнение до конца периода 4

Следующие орбитали, которые будут использоваться, - это 4p, и они заполняются точно так же, как 2p или 3p. Мы вернулись к элементам p-блока от галлия до криптона.Бром, например, равен 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p x 2 4p y 2 4p z 1 .


Полезное упражнение: Определите электронные структуры всех элементов от галлия до криптона. Вы можете проверить свои ответы, сравнив их с элементами, находящимися прямо над ними в Периодической таблице.Например, галлий будет иметь такое же расположение электронов внешнего уровня, что и бор или алюминий, за исключением того, что внешние электроны галлия будут находиться на 4-уровне.


Сводка

Запись электронной структуры элемента от водорода до криптона

  • Используйте Периодическую таблицу, чтобы найти атомный номер и, следовательно, количество электронов.

  • Заполните орбитали в порядке 1s, 2s, 2p, 3s, 3p, 4s, 3d, 4p - пока у вас не закончатся электроны.3-й - самый неудобный - запомните это особо. Заполните p- и d-орбитали по отдельности, насколько это возможно, прежде чем объединять электроны в пары.

  • Помните, что хром и медь имеют электронные структуры, которые нарушают структуру в первом ряду d-блока.

 

Запись электронной структуры больших элементов s- или p-блока


Примечание: Мы намеренно исключаем элементы d-блока, кроме первой строки, которую мы уже подробно рассмотрели.Картина неудобных структур отличается в других рядах. Это проблема для степени.


Сначала определите количество внешних электронов. Вполне вероятно, что это все, что вас все равно попросят сделать.

Число внешних электронов такое же, как и номер группы. (Благородные газы здесь представляют небольшую проблему, потому что их обычно называют группой 0, а не группой 8. Гелий имеет 2 внешних электрона, а остальные - 8.) Все элементы в группе 3, например, имеют 3 электрона на внешнем уровне. При необходимости поместите эти электроны на s- и p-орбитали. Орбитали какого уровня? Подсчитайте периоды в Периодической таблице (не забывая тот, в котором есть H и He).

Йод находится в группе 7 и, следовательно, имеет 7 внешних электронов. Он находится в пятом периоде, поэтому его электроны будут на 5s и 5p орбиталях. Йод имеет внешнюю структуру 5s 2 5p x 2 5p y 2 5p z 1 .

А как насчет внутренних электронов, если их тоже нужно вычислить? Уровни 1, 2 и 3 будут заполнены, как и уровни 4, 4 и 4. Уровни 4f не заполняются до тех пор, пока вас не спросят на A'level. Просто забудьте о них! Это дает полную структуру: 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 6 4d 10 5s 2 5p x 2 5p y 2 5p z 1 .

Когда вы закончите, посчитайте все электроны, чтобы убедиться, что они совпадают с атомным номером. Не забудьте сделать эту проверку - легко пропустить выход на орбиту, когда все усложняется.

Барий находится в группе 2 и поэтому имеет 2 внешних электрона. Это в шестом периоде. Барий имеет внешнюю структуру 6s 2 .

Включая все внутренние уровни: 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 6 4d 10 5s 2 5p 6 2 .

Было бы легко включить 5d 10 по ошибке, но уровень d всегда заполняет после следующего уровня s, поэтому 5d заполняется через 6 секунд, как 3d заполняется через 4 секунды. Если вы посчитаете количество электронов, вы легко заметите эту ошибку, потому что их будет на 10 больше.


Примечание: Не беспокойтесь об этих сложных конструкциях. Вам нужно знать, как их решать в принципе, но ваши экзаменаторы с гораздо большей вероятностью попросят у вас что-нибудь простое, например серу или железо.


 

Куда бы вы сейчас хотели пойти?

К разработке электронных структур ионов. . .

В меню атомарных свойств. . .

В меню атомной структуры и связей. . .

В главное меню. . .

 

© Джим Кларк 2000 (последнее изменение в октябре 2012 г.)

.

Chem4Kids.com: Элементы и Периодическая таблица: Периодическая таблица


Периодическая таблица организована как большая сетка. Каждый элемент помещается в определенное место из-за его атомарной структуры. Как и в любой другой сетке, в периодической таблице есть строки (слева направо) и столбцы (вверх и вниз). Каждая строка и столбец имеют определенные характеристики. Например, магний (Mg) и кальций (Mg) находятся во втором столбце и имеют определенные сходства, в то время как калий (K) и кальций (Ca) из четвертой строки имеют разные характеристики.Магний и натрий (Na) также имеют общие качества, потому что находятся в один период (схожие электронные конфигурации). Несмотря на то, что они пропускают некоторые квадраты между ними, все строки читаются слева направо. Когда вы смотрите на периодическую таблицу, каждая строка называется периодом (Понять? Как таблица PERIODic.). Все элементы периода имеют одинаковое количество атомных орбиталей. Например, каждый элемент в верхнем ряду (первый период) имеет одну орбиталь для своих электронов. Все элементы во втором ряду (второй период) имеют две орбитали для своих электронов.По мере продвижения вниз по таблице каждая строка добавляет орбиталь. В настоящее время существует максимум семь электронных орбиталей. Теперь вы знаете, что месячные идут слева направо. Периодическая таблица также получила особое название для своих вертикальных столбцов. Каждый столбец называется группой . Элементы в каждой группе имеют одинаковое количество электронов на внешней орбитали . Эти внешние электроны также называются валентными электронами . Это электроны, участвующие в химических связях с другими элементами.

Каждый элемент в первом столбце (первая группа) имеет один электрон во внешней оболочке. Каждый элемент во втором столбце (вторая группа) имеет два электрона во внешней оболочке. Продолжая считать столбцы, вы будете знать, сколько электронов находится во внешней оболочке. Когда вы смотрите на элементы перехода, есть исключения из порядка, но вы понимаете общую идею. Переходные элементы добавляют электроны на предпоследнюю орбиталь.

Например, азот (N) имеет атомный номер семь.Атомный номер говорит о том, что в нейтральном атоме азота семь электронов. Сколько электронов находится на его внешней орбитали? Азот находится в пятнадцатом столбце, обозначенном «Группа VA». «V» - это римская цифра для пяти, обозначающая количество электронов на внешней орбитали. Вся эта информация говорит вам, что на первой орбитали есть два электрона, а на второй - пять (2-5).

Фосфор (P) также находится в группе VA, что означает, что он также имеет пять электронов на своей внешней орбитали.Однако, поскольку атомный номер фосфора равен пятнадцати, электронная конфигурация составляет 2-8-5.

Водород (H) и гелий (He) - особые элементы. Водород в нейтральной форме не имеет нейтрона. Есть только один электрон и один протон. Вы, вероятно, не найдете атомарного водорода, плавающего сами по себе. Атомарный водород хочет объединиться с другими элементами, чтобы заполнить свою внешнюю оболочку. Ваша химическая работа, скорее всего, будет использовать молекулярный водород (H 2 ) или ионы водорода (H + , протоны).

Гелий (He) отличается от всех других элементов. Он очень стабилен, имея всего два электрона на внешней орбитали (валентной оболочке). Несмотря на то, что у него всего два электрона, он все еще сгруппирован с благородными газами, у которых есть восемь электронов на их внешних орбиталях. Благородные газы и гелий «счастливы», потому что их валентная оболочка заполнена.

ChemCam Rock Laser для MSL (видео Лос-Аламоса, Нидерланды)


.

Периодическая таблица элементов Чтение и понимание

Элемент - это вещество, состоящее из атомов, которые больше не могут распадаться на другие вещества, которые все имеют одинаковое количество протонов, которое переводится в его атомный номер. Поскольку этих элементов более 100, химикам и другим ученым был нужен метод их классификации. Это привело к оригинальной таблице Менделеева, которая была впервые предложена русским химиком Дмитрием Менделеевым в 1869 году. Сегодня она называется Периодической таблицей элементов .

Текущая Периодическая таблица - это метод для перечисления около 115 различных элементов. Элементы перечислены по структуре каждого элемента. Атомы состоят из протонов, нейтронов и электронов. Периодическая таблица указывает количество протонов и электронов, которые каждый атом имеет в своей внешней оболочке, расположенной вне ядра.

В Периодической таблице элементов атомы перечислены слева направо и сверху вниз. Все элементы перечислены в порядке их атомного номера, который соответствует количеству протонов в ядре каждого атома.

Элементы выстроены в циклы или периоды, поэтому ее называют «периодической» таблицей. Сначала они выстраиваются в ряды на основе их атомных номеров, но затем некоторые столбцы пропускаются, поэтому элементы с одинаковым числом электронов выстраиваются в одном столбце. Элементы в тех же столбцах будут иметь одинаковые свойства.

Семь или восемь горизонтальных строк Периодической таблицы называются периодами. Первый период самый короткий и состоит всего из двух элементов: водорода и гелия.Шестая горизонтальная строка или период содержит 32 элемента. Самый левый элемент в точке или строке имеет только один электрон во внешней оболочке, а самый правый элемент имеет полную оболочку.

Восемнадцать вертикальных столбцов представляют собой разные группы, каждая из которых имеет разные свойства. Примером группы являются газы, называемые благородными или инертными. Они выстраиваются в последнюю (18 ) колонку или группу Периодической таблицы. Каждый из этих элементов имеет полную внешнюю оболочку из электронов, что означает, что они очень стабильны.Когда элемент стабилен, они обычно не реагируют на другие элементы. Они плохо или легко смешиваются.

Второй пример - металлы, называемые щелочами. Они выстраиваются в первом столбце или группе и все очень похожи, имея только один электрон на внешней оболочке. Эти элементы очень реактивны, что означает, что они легко смешиваются с другими элементами.

Классификация групп этих элементов помогает химикам и другим ученым понять, предвидеть и предсказать, как различные элементы будут реагировать друг с другом во время экспериментов или в других ситуациях.

Наконец, у каждого элемента есть имя и одно- или двухбуквенное сокращение, чтобы ученым было проще пользоваться таблицей. Некоторые однобуквенные сокращения легко запомнить, например H для водорода, O для кислорода и C для углерода. Некоторые могут быть немного сложнее, потому что имя элемента происходит на другом языке. Например, AU - это сокращение от золота, потому что золото происходит от латинского слова aurum .

Таким образом, Периодическая таблица элементов - полезный и полезный инструмент для химиков и ученых. Он используется как быстрый способ узнать, как разные элементы будут реагировать друг на друга.

.

Азот - Информация об элементе, свойства и применение

Расшифровка:

Химия в ее элементе: азот

(Promo)

Вы слушаете Химию в ее элементе, представленную вам журналом Chemistry World , журналом Королевского химического общества.

(Окончание акции)

Крис Смит

Здравствуйте! На этой неделе мы взрываем подушки безопасности, задыхаем животных и разбираемся с порохом, потому что химик из Кембриджа Питер Уотерс исследует историю азота.

Peter Wothers

Газообразный азот составляет около 80% воздуха, которым мы дышим. Это, безусловно, самый распространенный элемент в своей группе в периодической таблице, и все же это последний член этого семейства, который был обнаружен. Другие элементы в этой группе, фосфор, мышьяк, сурьма и висмут, были обнаружены, использовались и злоупотребляли по крайней мере за 100 лет до того, как стало известно об азоте. Лишь в 18 -м и годах люди сосредоточили свое внимание на химии воздуха и свойствах подготовки различных газов.Мы можем по-настоящему понять открытие азота, только отметив открытие некоторых из этих других газов.

Роберт Бойль заметил в 1670 году, что при добавлении кислоты в железные опилки смесь становилась очень горячей и выделяла обильные и вонючие пары. Он был настолько легковоспламеняем, что при приближении к нему зажженной свечи легко загорался и горел голубоватым и несколько зеленоватым пламенем. Примерно 100 лет спустя гениальный, но замкнутый ученый-миллионер Генри Кавендиш собирал и собирал водород более тщательно.Кавендиш назвал легковоспламеняющийся воздух из металлов в знак признания этого поразительного свойства. Он также изучал известный нам газ, называемый диоксидом углерода, который впервые был получен шотландским химиком Джозефом Блэком в 1750-х годах. Черный назывался фиксированным воздухом двуокиси углерода, поскольку считалось, что он заблокирован или зафиксирован в определенных минералах, таких как известняк. Его можно было освободить из каменной тюрьмы под действием тепла или кислот.

Углекислый газ был также известен под названием «mephitic air», слово «mephitic» означает ядовитый или ядовитый.Это название, очевидно, произошло от его свойства разрушать жизнь, поскольку оно быстро задыхает любых животных, погруженных в него. Здесь начинается путаница с газообразным азотом, поскольку чистый газообразный азот также удушает животных. Если кислород в замкнутом количестве воздуха израсходован, либо за счет горения в нем свечи, либо из-за содержания животного, большая часть кислорода превращается в газообразный диоксид углерода, который смешивается с газообразным азотом, присутствующим в воздухе. Эта ядовитая смесь больше не поддерживает жизнь и поэтому была названа мефитической.

Решающим экспериментом в открытии азота стало осознание того, что в этом смертоносном воздухе есть по крайней мере два различных вида удушающих газов. Это было сделано путем пропускания смеси газов через раствор щелочи, который поглотил диоксид углерода, но оставил после себя газообразный азот. Таким образом Кавендиш приготовил газообразный азот. Он пропускал воздух взад и вперед над нагретым древесным углем, который превращал кислород воздуха в двуокись углерода. Затем диоксид углерода растворяли в щелочи, оставив после себя инертный газообразный азот, который, как он правильно заметил, был немного менее плотным, чем обычный воздух.К сожалению, Кавендиш не опубликовал свои выводы. Он только что сообщил их в письме своему коллеге-ученому Джозефу Пристли, одному из первооткрывателей газообразного кислорода. Следовательно, открытие азота обычно приписывается одному из учеников Джозефа Блэка, шотландскому ученому Дэниелу Резерфорду, который также является дядей писателя и поэта сэра Вальтера Скотта. Резерфорд опубликовал свои открытия, похожие на те, что сделал Кавендиш в его докторской диссертации, озаглавленной «Инаугурационная диссертация в эфире, названная фиксированным или мефитическим» в 1772 году.

Так что насчет названия, азот? В конце 1780-х годов химическая номенклатура претерпела крупную революцию под руководством французского химика Антуана Лавуазье. Именно он и его коллеги предложили многие из названий, которые мы все еще используем сегодня, в том числе слово водород, которое происходит от греческого, означающего образование воды, и кислород от греческого слова «производитель кислоты», поскольку Лавуазье ошибочно полагал, что кислород является ключевым компонентом образования кислоты. все кислоты. Однако в свой список известных тогда элементов Лавуазье включил термин азот или азотический газ для того, что мы сейчас называем азотом.Это опять-таки происходит от греческих слов, на этот раз означающих отсутствие жизни, опять-таки акцентируя внимание на ее зловонном качестве. Вскоре было отмечено, что существует множество анаэробных газов, фактически никакой другой газ, кроме кислорода, не может поддерживать жизнь. Поэтому название азот было предложено из наблюдения, опять же впервые сделанного Кавендишем, что если газы воспламеняются кислородом, а затем образующиеся газы диоксида азота проходят через щелочь, образуется селитра, иначе известная как селитра или нитрат калия.Слово азот, следовательно, означает образование селитры. Производные от слова азот сохранились до сих пор. Компаунд, используемый для взрывного наполнения газом автомобильных подушек безопасности, представляет собой азид натрия, соединение только натрия и азота. При срабатывании это соединение взрывно разлагается, высвобождая газообразный азот, который надувает мешки. Это азотное соединение не только не уничтожило жизнь, но и спасло тысячи людей.

Крис Смит

Питер Уотерс из Кембриджского университета рассказывает историю открытия азота.В следующий раз, когда мы расскажем о химии в ее стихии, о том, как химики вроде Менделеева разобрались как с известным, так и с неизвестным.

Марк Пеплоу

Пока другие ученые пытались создать способы упорядочения известных элементов, Менделеев создал систему, которая могла предсказать существование элементов, которые еще не были обнаружены. Когда он представил эту таблицу миру в 1869 году, в ней было четыре заметных пробела. Один из них был чуть ниже марганца, и Менделеев предсказал, что будет найден элемент с атомным весом 43, чтобы заполнить этот пробел, но только в 1937 году группа итальянских ученых наконец нашла недостающий элемент, который они назвали технецием.

Крис Смит

И вы можете услышать, как Марк Пеплоу рассказывает историю технеция в выпуске «Химии в ее стихии» на следующей неделе. Я Крис Смит, спасибо за внимание. Увидимся в следующий раз.

(Промо)

(Окончание промо)

.

Смотрите также