Соединение калия и серы


Сера, подготовка к ЕГЭ по химии

Сера - элемент VIa группы 3 периода периодической таблицы Д.И. Менделеева. Относится к группе халькогенов - элементов VIa группы.

Сера - S - простое вещество имеет светло-желтый цвет. Использовалась еще до нашей эры в составе священных курений при религиозных обрядах.

Основное и возбужденное состояние атома серы

Электроны s- и p-подуровня способны распариваться и переходить на d-подуровень. Как и всегда, количество валентных электронов отражает количество возможных связей у атома.

В разных электронных конфигурациях сера способна принимать валентности: II, IV и VI.

Природные соединения
  • FeS2 - пирит, колчедан
  • ZnS - цинковая обманка
  • PbS - свинцовый блеск (галенит), Sb2S3 - сурьмяный блеск, Bi2S3 - висмутовый блеск
  • HgS - киноварь
  • CuFeS2 - халькопирит
  • Cu2S - халькозин
  • CuS - ковеллин
  • BaSO4 - барит, тяжелый шпат
  • CaSO4 - гипс

В местах вулканической активности встречаются залежи самородной серы.

Получение

В промышленности серу получают из природного газа, который содержит газообразные соединения серы: H2S, SO2.

H2S + O2 = S + H2O (недостаток кислорода)

SO2 + C = (t) S + CO2

Серу можно получить разложением пирита

FeS2 = (t) FeS + S

В лабораторных условиях серу можно получить слив растворы двух кислот: серной и сероводородной.

H2S + H2SO4 = S + H2O

Химические свойства

  • Реакции с неметаллами
  • На воздухе сера окисляется, образуя сернистый газ - SO2. Реагирует со многими неметаллами, без нагревания - только со фтором.

    S + O2 = (t) SO2

    S + F2 = SF6

    S + Cl2 = (t) SCl2

    S + C = (t) CS2

  • Реакции с металлами
  • При нагревании сера бурно взаимодействует со многими металлами с образованием сульфидов.

    K + S = (t) K2S

    Al + S = Al2S3

    Fe + S = (t) FeS

  • Реакции с кислотами
  • При взаимодействии с концентрированными кислотами (при длительном нагревании) сера окисляется до сернистого газа или серной кислоты.

    S + H2SO4 = (t) SO2 + H2O

    S + HNO3 = (t) H2SO4 + NO2 + H2O

  • Реакции с щелочами
  • Сера вступает в реакции диспропорционирования с щелочами.

    S + KOH = (t) K2S + K2SO3 + H2O

Сероводород - H2S

Бесцветный газ с характерным запахом тухлых яиц. Огнеопасен. Используется в химической промышленности и в лечебных целях (сероводородные ванны).

Получение

Сероводород получают в результате реакции сульфида алюминия с водой, а также взаимодействия разбавленных кислот с сульфидами.

Al2S3 + H2O = (t) Al(OH)3↓ + H2S↑

FeS + HCl = FeCl2 + H2S↑

Химические свойства

  • Кислотные свойства
  • Сероводород плохо диссоциирует в воде, является слабой кислотой. Реагирует с основными оксидами, основаниями с образованием средних и кислых солей (зависит от соотношения основания и кислоты).

    MgO + H2S = (t) MgS + H2O

    KOH + H2S = KHS + H2O (гидросульфид калия, избыток кислоты)

    2KOH + H2S = K2S + 2H2O

    Металлы, стоящие в ряду напряжений до водорода, способны вытеснить водород из кислоты.

    Ca + H2S = (t) CaS + H2

  • Восстановительные свойства
  • Сероводород - сильный восстановитель (сера в минимальной степени окисления S2-). Горит в кислороде синим пламенем, реагирует с кислотами.

    H2S + O2 = H2O + S (недостаток кислорода)

    H2S + O2 = H2O + SO2 (избыток кислорода)

    H2S + HClO3 = H2SO4 + HCl

  • Качественная реакция
  • Качественной реакцией на сероводород является реакция с солями свинца, при котором образуется сульфид свинца.

    H2S + Pb(NO3)2 = PbS↓ + HNO3

Оксид серы - SO2

Сернистый газ - SO2 - при нормальных условиях бесцветный газ с характерным резким запахом (запах загорающейся спички).

Получение

В промышленных условиях сернистый газ получают обжигом пирита.

FeS2 + O2 = (t) FeO + SO2

В лаборатории SO2 получают реакцией сильных кислот на сульфиты. В ходе подобных реакций образуется сернистая кислота, распадающаяся на сернистый газ и воду.

K2SO3 + H2SO4 = (t) K2SO4 + H2O + SO2

Сернистый газ получается также в ходе реакций малоактивных металлов с серной кислотой.

Cu + H2SO4(конц.) = (t) CuSO4 + SO2 + H2O

  • Кислотные свойства
  • С основными оксидами, основаниями образует соли сернистой кислоты - сульфиты.

    K2O + SO2 = K2SO3

    NaOH + SO2 = NaHSO3

    2NaOH + SO2 = Na2SO3 + H2O

  • Восстановительные свойства
  • Химически сернистый газ очень активен. Его восстановительные свойства продемонстрированы в реакциях ниже.

    Fe2(SO4)3 + SO2 + H2O = FeSO4 + H2SO4

    SO2 + O2 = (t, кат. - Pt) SO3

  • Как окислитель
  • В присутствии сильных восстановителей SO2 способен проявлять окислительные свойства (понижать степень окисления).

    CO + SO2 = CO2 + S

    H2S + SO2 = S + H2O

Сернистая кислота

Слабая, нестойкая двухосновная кислота. Существует лишь в разбавленных растворах.

Получение

SO2 + H2O ⇄ H2SO3

Химические свойства

  • Диссоциация
  • Диссоциирует в водном растворе ступенчато.

    H2SO3 = H+ + HSO3-

    HSO3- = H+ + SO32-

  • Кислотные свойства
  • В реакциях с основными оксидами, основаниями образует соли - сульфиты и гидросульфиты.

    CaO + H2SO3 = CaSO3 + H2O

    H2SO3 + 2KOH = 2H2O + K2SO3 (соотношение кислота - основание, 1:2)

    H2SO3 + KOH = H2O + KHSO3 (соотношение кислота - основание, 1:1)

  • Окислительные свойства
  • С сильными восстановителями сернистая кислота принимает роль окислителя.

    H2SO3 + H2S = S↓ + H 2O

  • Восстановительные свойства
  • Как и сернистый газ, сернистая кислота и ее соли обладают выраженными восстановительными свойствами.

    H2SO3 + Br2 = H2SO4 + HBr

Оксид серы VI - SO3

Является высшим оксидом серы. Бесцветная летучая жидкость с удушающим запахом. Ядовит.

Получение

В промышленности данный оксид получают, окисляя SO2 кислородом при нагревании и присутствии катализатора (оксид ванадия - Pr, V2O5).

SO2 + O2 = (кат) SO3

В лабораторных условиях разложением солей серной кислоты - сульфатов.

Fe2(SO4)3 = (t) SO3 + Fe2O3

Химические свойства

  • Кислотные свойства
  • Является кислотным оксидом, соответствует серной кислоте. При реакции с основными оксидами и основаниями образует ее соли - сульфаты и гидросульфаты. Реагирует с водой с образованием серной кислоты.

    SO3 + 2KOH = K2SO4 + 2H2O (основание в избытке - средняя соль)

    SO3 + KOH = KHSO4 + H2O (кислотный оксид в избытке - кислая соль)

    SO3 + Ca(OH)2 = CaSO4 + H2O

    SO3 + Li2O = Li2SO4

    SO3 + H2O = H2SO4

  • Окислительные свойства
  • SO3 - сильный окислитель. Чаще всего восстанавливается до SO2.

    SO3 + P = SO2 + P2O5

    SO3 + H2S = SO2 + H2O

    SO3 + KI = SO2 + I2 + K2SO4

    © Беллевич Юрий Сергеевич 2018-2020

    Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.

серы

Химический элемент сера относится к халькогенам и неметаллам. Это известно с давних времен. Его первооткрыватель и дата открытия неизвестны.

Зона данных

Классификация: Сера - это халькоген и неметалл
Цвет: желтый
Атомный вес: 32,06
Состояние: цельный
Температура плавления: 115.2 o С, 388,4 К
Температура кипения: 444,7 o С, 717,9 К
Электронов: 16
Протонов: 16
Нейтроны в наиболее распространенном изотопе: 16
Электронные оболочки: 2,8,6
Электронная конфигурация: 1s 2 2s 2 2p 6 3s 2 3p 4
Плотность при 20 o C: 2.07 г / см 3
Показать больше, в том числе: тепла, энергии, окисления,
реакций, соединений, радиусов, проводимости
Атомный объем: 15,5 см 3 / моль
Состав: S 8 кольца
Твердость: 2 мес
Удельная теплоемкость 0,71 Дж г -1 К -1
Теплота плавления 1.7175 кДж моль -1
Теплота распыления 279 кДж моль -1
Теплота испарения 9,8 кДж моль -1 из S 2
1 st энергия ионизации 999,6 кДж моль -1
2 nd энергия ионизации 2251 кДж моль -1
3 rd энергия ионизации 3360.6 кДж моль -1
Сродство к электрону 200,4144 кДж моль -1
Минимальная степень окисления -2
Мин. общее окисление нет. -2
Максимальное число окисления 6
Макс. общее окисление нет. 6
Электроотрицательность (шкала Полинга) 2,58
Объем поляризуемости 2.9 Å 3
Реакция с воздухом сильнодействующий, w / ht ⇒ SO 2
Реакция с 15 M HNO 3 сильная, ⇒ H 2 SO 4 , NO x
Реакция с 6 M HCl нет
Реакция с 6 М NaOH нет
Оксид (оксиды) СО 2 , СО 3
Гидрид (-ы) H 2 S (сероводород)
Хлорид (ы) S 2 Класс 2 , SCl 2
Атомный радиус 100 часов
Ионный радиус (1+ ион)
Ионный радиус (2+ ионов)
Ионный радиус (3+ ионов)
Ионный радиус (1-ионный)
Ионный радиус (2-ионный) 170 вечера
Ионный радиус (3-ионный)
Теплопроводность 0.205 Вт · м -1 K -1
Электропроводность 5,0 x 10 -14 S см -1
Температура замерзания / плавления: 115,2 o С, 388,4 К

Отложения серы вокруг вулканического источника

Наибольшую пользу для здоровья от лука и чеснока составляют соединения серы.

Серные равнины, простирающиеся вокруг извержения вулканической луны Юпитера Ио.Фотография: НАСА

.

Древняя очистка серы: серную руду нагревают в емкостях, крышки которых плотно прилегают, чтобы ограничить выброс SO 2 . (Современный предел кратковременного воздействия для SO 2 составляет 5 частей на миллион. (12) ) Жидкая сера собирается под резервуарами. Георгий Агрикола, 1556.

Открытие серы

Доктор Дуг Стюарт

Сера известна с древних времен. В Библии это называется серой. Его можно найти в элементарном состоянии вокруг жерл вулканов.

Название могло быть образовано от арабского «суфра», означающего желтый, или санскритского «шульбари», означающего враг (ари) меди (шульба). (1)

Возможность на санскрите привлекательна, потому что она несет в себе послание о знаниях химии людьми с давних пор: сера действительно легко реагирует со многими металлами, включая медь. (Санскрит - один из старейших индоевропейских языков - ему более 3000 лет. Несмотря на это, это человеческий язык, наиболее совместимый с искусственным интеллектом. (2) )

При горении сера выделяется двуокись серы, ядовитый газ. Одно время этот газ использовался в Нью-Йорке для дезинфекции зданий, зараженных инфекционными заболеваниями. (3)

Использование сжигаемой серы для фумигации началось несколько тысяч лет назад. В «Одиссее» Гомера, которому около 2800 лет, Одиссей говорит: «Принеси серу, старая кормилица, очищающая все загрязнения, и принеси мне огонь, чтобы я очистил дом серой…» (4)

В 808 году китайский текст дает нам, возможно, первый рецепт пороха, содержащего селитру, серу и углерод. (5)

Сера также считается компонентом «греческого огня» - оружия, похожего на огнемет, использовавшийся Византийской империей. (6), (7)

Сера стала признанным химическим элементом в 1789 году, когда Антуан Лавуазье включил ее в свой знаменитый список элементов. (8)

В 1823 году немецкий химик Эйльхард Митчерлих открыл аллотропию серы: он показал, что форма кристаллов серы, полученная при охлаждении расплавленной серы, отличается от формы, полученной при кристаллизации элемента из раствора. (9)

Сера, полученная из расплавленной серы, называется моноклинной серой, а сера, полученная при кристаллизации раствора, называется ромбической серой. Обе формы состоят из колец S 8 . Разница между формами заключается в том, как кольца расположены внутри кристалла.

В то время концепция аллотропии - различных структурных форм одного и того же элемента - не стала формальной частью химии. Только в 1841 году Берцелиус ввел этот термин для объяснения моноклинной и ромбической форм серы. (10)

К 1800-м годам сера в форме серной кислоты стала лучшим способом судить о богатстве страны. Страны даже воевали из-за серы.

Вот что сказал об этом великий немецкий химик Юстус Либих примерно в 1843 году:

«Не будет преувеличением сказать, что мы можем справедливо судить о коммерческом процветании страны по количеству потребляемой серной кислоты.

(Цена на серу влияет на цену…) отбеленных и набивных хлопчатобумажных материалов, мыла, стекла и т. Д., И помня, что Великобритания поставляет их в Америку, Испанию, Португалию и Восток, обменивая их на хлопок-сырец, шелк, вино , изюм, индиго и т. д., мы можем понять, почему английское правительство должно было решиться на войну с Неаполем (в 1839 г.), чтобы отменить монополию на серу, которую последняя держава недавно пыталась установить.” (11)

Интересные факты о сере

  • Сера составляет почти 3% массы Земли. Если вы думаете, что &
.

серы | Определение, свойства, использование и факты

Сера (S) , также обозначается как сера , неметаллический химический элемент, принадлежащий к кислородной группе (группа 16 [VIa] периодической таблицы), один из наиболее реактивных элементов. Чистая сера представляет собой хрупкое твердое вещество бледно-желтого цвета без вкуса и запаха, плохо проводящее электричество и нерастворимое в воде. Реагирует со всеми металлами, кроме золота и платины, с образованием сульфидов; он также образует соединения с несколькими неметаллическими элементами.Ежегодно производятся миллионы тонн серы, в основном для производства серной кислоты, которая широко используется в промышленности.

Британская викторина

118 символов и названий периодической таблицы викторины

Zr

  • сера: подводная кипящая сера Котлы с расплавленной серой на склоне вулкана Никко у Марианских островов. Основное финансирование этой экспедиции было предоставлено Программой исследования океана NOAA и программой NOAA Vents; видеоклипы отредактированы Биллом Чедвиком, Университет штата Орегон / NOAA См. все видео для этой статьи
  • сера: кипящая сера под водой Одна рука дистанционно управляемого транспортного средства Джейсона пробивает тонкую корку на залежи расплавленной серы около Марианские острова. Основное финансирование этой экспедиции было предоставлено Программой исследования океана NOAA и программой NOAA Vents; видеоклипы отредактированы Биллом Чедвиком, Государственный университет Орегона / NOAA См. все видео к этой статье

По космическому изобилию сера занимает девятое место среди элементов, составляя только один атом из 20 000–30 000.Сера встречается в несвязанном состоянии, а также в сочетании с другими элементами в горных породах и минералах, которые широко распространены, хотя она классифицируется среди второстепенных компонентов земной коры, в которых ее доля оценивается между 0,03 и 0,06%. На основании открытия, что некоторые метеориты содержат около 12 процентов серы, было высказано предположение, что более глубокие слои Земли содержат гораздо большую долю. Морская вода содержит около 0,09% серы в форме сульфата.В подземных отложениях очень чистой серы, которые присутствуют в куполообразных геологических структурах, считается, что сера образовалась в результате действия бактерий на минеральный ангидрит, в котором сера соединяется с кислородом и кальцием. Отложения серы в вулканических регионах, вероятно, образовались из газообразного сероводорода, образующегося под поверхностью Земли и преобразованного в серу в результате реакции с кислородом воздуха.

Свойства элемента
атомный номер 16
атомный вес 32.064
точка плавления
ромбическая 112,8 ° C (235 ° F)
моноклинная 119 ° C (246 ° F)
точка кипения 444,6 ° C ( 832 ° F)
плотность (при 20 ° C [68 ° F])
ромбический 2,07 г / см 3
моноклинный 1,96 г / см 3
степени окисления −2, +4, +6
электронная конфигурация 1 с 2 2 с 2 2 p 6 3 с 2 3 п 4

История

История серы - это часть древности.Само название, вероятно, пришло на латынь из языка осканов, древнего народа, населявшего регион, включая Везувий, где широко распространены месторождения серы. Доисторические люди использовали серу в качестве пигмента для наскальных рисунков; Один из первых зарегистрированных примеров искусства лечения - использование серы в качестве тонизирующего средства.

Сжигание серы использовалось в египетских религиозных церемониях еще 4000 лет назад. Упоминания «огонь и сера» в Библии связаны с серой, предполагая, что «адские огни» питаются серой.Начало практического и промышленного использования серы приписывают египтянам, которые использовали диоксид серы для отбеливания хлопка еще в 1600 году до нашей эры. Греческая мифология включает химию серы: Гомер рассказывает об использовании Одиссеем двуокиси серы для окуривания камеры, в которой он убил женихов своей жены. Использование серы во взрывчатых веществах и огнестрельных средствах датируется примерно 500 годом до нашей эры в Китае, а средства для производства пламени, используемые в войне (греческий огонь), были приготовлены из серы в средние века. Плиний Старший в 50 г. н.э. сообщил о нескольких отдельных случаях использования серы и, по иронии судьбы, сам был убит, по всей вероятности, парами серы во время великого извержения Везувия (79 г. до н. Э.).Сера рассматривалась алхимиками как принцип горючести. Лавуазье признал его элементом в 1777 году, хотя некоторые считали его соединением водорода и кислорода; его элементарная природа была установлена ​​французскими химиками Жозефом Гей-Люссаком и Луи Тенаром.

Получите эксклюзивный доступ к контенту из нашего 1768 First Edition с подпиской. Подпишитесь сегодня

Естественное возникновение и распространение

Многие руды важных металлов представляют собой соединения серы, сульфидов или сульфатов.Некоторыми важными примерами являются галенит (сульфид свинца, PbS), обманка (сульфид цинка, ZnS), пирит (дисульфид железа, FeS 2 ), халькопирит (сульфид железа и меди, CuFeS 2 ), гипс (дигидрат сульфата кальция, CaSO 4 ∙ 2H 2 O) и барита (сульфат бария, BaSO 4 ). Сульфидные руды ценятся в основном за содержание металлов, хотя в процессе, разработанном в 18 веке для производства серной кислоты, использовался диоксид серы, полученный путем сжигания пирита. Уголь, нефть и природный газ содержат соединения серы.

В сере аллотропия возникает из двух источников: (1) различные способы связывания атомов в единую молекулу и (2) упаковка многоатомных молекул серы в различные кристаллические и аморфные формы. Сообщается о 30 аллотропных формах серы, но некоторые из них, вероятно, представляют собой смеси. Только восемь из 30 кажутся уникальными; пять содержат кольца из атомов серы, а остальные содержат цепи.

В ромбоэдрическом аллотропе, обозначаемом ρ-сера, молекулы состоят из колец из шести атомов серы.Эту форму получают обработкой тиосульфата натрия холодной концентрированной соляной кислотой, экстракцией остатка толуолом и выпариванием раствора с получением гексагональных кристаллов. ρ-сера нестабильна, в конечном итоге превращаясь в ромбическую серу (α-серу).

Второй общий аллотропный класс серы - это класс восьмичленных кольцевых молекул, три кристаллические формы которых хорошо охарактеризованы. Один из них - это ромбическая (часто неправильно называемая ромбической) форма, α-сера.Он стабилен при температурах ниже 96 ° C. Другой из кристаллических аллотропов кольца S 8 является моноклинной или β-формой, в которой две оси кристалла перпендикулярны, а третья образует наклонный угол с первыми двумя. Есть еще некоторые неясности относительно его структуры; эта модификация устойчива от 96 ° С до точки плавления 118,9 ° С. Второй моноклинный аллотроп циклооктасеры - это γ-форма, нестабильная при всех температурах, быстро превращающаяся в α-серу.

Сообщается об орторомбической модификации, кольцевых молекулах S 12 и еще одном нестабильном кольцевом аллотропе S 10 . Последний превращается в полимерную серу и S 8 . При температурах выше 96 ° C α-аллотроп превращается в β-аллотроп. Если дается достаточно времени для того, чтобы этот переход произошел полностью, дальнейшее нагревание вызывает плавление при 118,9 ° C; но если α-форма нагревается так быстро, что превращение в β-форму не успевает произойти, α-форма плавится при 112.8 ° С.

Сера представляет собой прозрачную подвижную жидкость желтого цвета, чуть выше точки плавления. При дальнейшем нагревании вязкость жидкости постепенно уменьшается до минимума примерно при 157 ° C, но затем быстро увеличивается, достигая максимального значения примерно при 187 ° C; между этой температурой и точкой кипения 444,6 ° C вязкость уменьшается. Цвет также меняется, становясь от желтого до темно-красного и, наконец, до черного примерно при 250 ° C. Считается, что изменения цвета и вязкости являются результатом изменений молекулярной структуры.Уменьшение вязкости при повышении температуры типично для жидкостей, но увеличение вязкости серы выше 157 ° C, вероятно, вызвано разрывом восьмичленных колец атомов серы с образованием реакционноспособных звеньев S 8 , которые объединяются в длинные цепочки, содержащие многие тысячи атомов. В этом случае жидкость приобретает высокую вязкость, характерную для таких структур. При достаточно высокой температуре все циклические молекулы разрываются, и длина цепочек достигает максимума.Выше этой температуры цепи распадаются на мелкие фрагменты. При испарении циклические молекулы (S 8 и S 6 ) образуются снова; примерно при 900 ° C преобладающей формой является S 2 ; наконец, одноатомная сера образуется при температурах выше 1800 ° C.

.

Сера - Информация об элементе, свойства и использование

Расшифровка:

Химия в ее элементе: сера

(Promo)

Вы слушаете Химию в ее элементе, представленную вам журналом Chemistry World , журналом Королевского химического общества.

(Конец промо)

Крис Смит

Здравствуйте, на этой неделе вонючие отложения, скунсы и запах ада.Все они начинаются с буквы S, как и элемент этой недели. Вот Стив Майлон.

Стив Майлон

«Как пахло?» Это был единственный вопрос, который мне нужно было задать своему коллеге-геологу об отложениях, которые она пыталась понять. Запах осадка многое говорит о химическом составе, лежащем в основе. Густые черные бескислородные отложения могут сопровождаться гнилостным запахом, характерным только для восстановленной серы.

Может быть, поэтому сера имеет такую ​​плохую репутацию.Мой сын полгода не ел яйца, когда почувствовал запах своего первого тухлого яйца. В Библии кажется, что всякий раз, когда что-то плохое случается или вот-вот должно произойти, горящая сера изображена на картинке:

Например,

В Бытие мы слышим, «Господь пролил дождем горящую серу на Содом и Гоморру»

А в Откровении мы читаем, что грешники найдут свое место в огненном озере из горящей серы ».

Странно то, что в обоих случаях мы не должны ожидать появления чего-либо пахнущего.Когда сера горит на воздухе, она обычно образует диоксид серы или триоксид серы, последний из которых не имеет запаха [исправлено из аудиофайла подкаста, в котором говорится, что диоксид серы не имеет запаха]. Эти соединения могут далее окисляться и выпадать в виде серной или сернистой кислоты. Это механизм кислотных дождей, которые опустошили леса на северо-востоке Соединенных Штатов, поскольку богатые серой угли сжигаются для выработки электроэнергии в штатах Среднего Запада и переносятся на восток преобладающими ветрами, когда серная кислота выпадает, вызывая всевозможные экологические проблемы.

Кроме того, горящий уголь и туман создают смог во многих промышленных городах, вызывая респираторные заболевания у местных жителей. Здесь также виноваты диоксид серы и серная кислота. Но опять же, с этой формой серы не связано никакого запаха.

Так что, если говорят, что ад или дьявол «пахнет серой», может быть, это не так уж плохо.

Но уменьшите серу, отдав ей пару электронов, и ее запах будет безошибочным. Требование восстановления серы до сульфида явно потеряно при переводе.

Ад, пахнущий сероводородом или любым другим сероорганическим соединением, совсем не будет хорошим местом. Органические сульфидные соединения, известные как тиолы или меркаптаны, настолько плохо пахнут, что их обычно добавляют в природный газ без запаха в очень малых количествах, чтобы служить «сигнализатором запаха» в случае утечки в трубопроводе природного газа. Скунсы используют неприятный запах бутил-селеномеркаптана как средство защиты от врагов. И лично для меня наихудшая химия происходит тогда, когда восстановленная сера придает неприятный (вонючий) привкус бутылкам с вином или пивом.-приведены, чтобы испортить приятную ночь в городе или послеобеденное время в местном пабе.

Итак, откуда берется "запах ада" в бескислородных отложениях. Интересно, что некоторые бактерии эволюционировали, чтобы использовать окисленную серу, сульфат, в качестве акцептора электронов во время дыхания. Подобно тому, как люди превращают элементарный кислород в воду, эти бактерии восстанавливают сульфат до сероводорода - они явно не обращают внимания на запах.

Запах - не единственный интересный химический состав, который сопровождает восстановленную серу.Глубокий черный цвет, связанный с бескислородными отложениями, является результатом низкой растворимости большинства сульфидов металлов. Восстановление сульфата до сульфида обычно сопровождает осаждение пирита (сульфида железа), киновари (сульфида ртути), галенита (сульфида свинца) и многих других минералов. Эти сульфиды металлов стали важным промышленным источником многих из этих важных металлов.

Промышленность - это то место, где вы почти наверняка найдете серу или, что более важно, серную кислоту, которая используется в различных процессах, от производства удобрений до переработки нефти.На самом деле серная кислота считается самым производимым химическим веществом в промышленно развитом мире. Представьте себе, что элемент с такой адской репутацией стал одним из самых важных.

А некоторые даже предполагают, что сера может спасти планету. Биогенное соединение диметилсульфид (ДМС) образуется в результате расщепления диметилсуфоноприопоната, осмотического регулирующего соединения, вырабатываемого планктоном в океане. Летучесть и низкая растворимость DMS приводит к ежегодному выбросу в атмосферу около 20 тг (10 ^ 12) серы.DMS окисляется до SO2 и, наконец, до частиц серной кислоты, которые могут действовать как ядра конденсации облаков, образуя облака, которые имеют общий охлаждающий эффект для планеты.

Представьте себе более высокие температуры, сопровождаемые большей биологической активностью, что приводит к большему выбросу DMS в атмосферу. Образовавшееся облако может охладить нагреющуюся планету. Это похоже на то, как планктон раскрывает зонтик, частично состоящий из серы. Из символа проклятия в спасителя ... что за поворот !!.

Крис Смит

Стив Майлон нюхает вонючую историю о Sulphur. К счастью, элемент на следующей неделе намного менее пахучий.

Джон Эмсли

История его открытия началась, когда Рэлей обнаружил, что азот, извлеченный из воздуха, имеет более высокую плотность, чем азот, полученный при разложении аммиака. Разница была небольшой, но реальной. Рамзи написал Рэли, предлагая поискать более тяжелый газ в азоте, полученном из воздуха, в то время как Рэли должен искать более легкий газ из аммиака.Рамзи удалил весь азот из своего образца, многократно пропуская его через нагретый магний. Ему оставили один процент, который не вступил в реакцию, и он обнаружил, что он плотнее азота. В его атомном спектре появились новые красные и зеленые линии, подтверждающие, что это новый элемент.

Крис Смит

И этот новый элемент был аргоном, прозванным ленивым элементом, потому что первоначально ученые думали, что он ни с чем не будет реагировать. Теперь мы знаем, что это неправда, и Джон Эмсли будет здесь, чтобы раскрыть секреты аргона в программе «Химия в ее элементе» на следующей неделе. Надеюсь, вы присоединитесь к нам.Я Крис Смит, спасибо за внимание и до свидания.

(промо)

(конец промо)

,

Смотрите также