Жесткое окисление алкенов перманганатом калия


Жесткое окисление алкенов. Как записать уравнение?

Жесткое окисление алкенов в кислой среде

Данный процесс чаще всего осуществляют, действуя на алкены подкисленным раствором перманганата калия, либо дихромата калия. В качестве средообразователя всегда используют серную кислоту. При таком окислении происходит полный разрыв углеродного скелета по двойной связи, и в зависимости от особенностей строения продуктами окисления могут быть различные вещества. 

Давайте сначала разберемся с тем, какие углеродсодержащие продукты образуются при жестком окислении алкенов с различным строением. Представим, что у нас стоит задача определить продукты окисления для следующих двух веществ:

Обратите внимание, что углеродные атомы при двойной связи обозначены разными цветами. 

Атом углерода, выделенный красным цветом, является первичным, то есть связан только с одним другим атомом углерода.

Атом углерода, выделенный желтым цветом, является вторичным, то есть связан с двумя другими атомами углерода.

Атом углерода, выделенный зеленым цветом, является третичным, то есть связан с тремя другими атомами углерода.

Жесткое окисление подразумевает разрыв углеродного скелета по месту двойной связи:

Следует запомнить, что первичные атомы углерода (красные) при таком окислении переходят в углекислый газ.
Вторичные атомы углерода (желтые) переходят в состав карбоксильной группы (COOH),  то есть образуется карбоновая кислота.
Третичные атомы углерода(зеленые) переходят в состав карбонильной группы, то есть образуется кетон.

Теперь осталось разобраться с остальными продуктами реакции. Если в качестве окислителя используется сернокислый раствор перманганата калия, то продуктами будут также MnSO4, K2SO4 и H2O. Если же в качестве окислителя взяли сернокислый раствор дихромата калия, продуктами будут Cr2(SO4)3, K2SO4 и H2O.

Давайте разберем все эти случаи. Начнем с реакции пропена с сернокислым раствором перманганата калия.

Пропен + KMnO4 +H2SO4

Исходя из вышесказанного, запишем схему этой реакции:

Осталось расставить коэффициенты. Определим, какие атомы изменили степени окисления. В случае марганца ничего сложного нет: степень окисления его в перманганате была +7, стала равна +2. Также степени окисления меняют те атомы углерода, у которых изменилось окружение. В схеме эти атомы обозначены желтым и красным цветами. Определим степени окисления этих атомов методом блоков. Изолируем друг от друга фрагменты молекулы по углерод-углеродным связям следующим образом:

Далее, условно примем, что заряд каждого выделенного блока равен нулю (как у нейтральной молекулы). Степень окисления водорода в органических веществах всегда равна +1. Обозначим степени окисления «желтого» атома С как х, «красного» — как y:

Далее, учитывая, что заряд каждого блока мы приняли равным нулю, мы можем составить и решить два уравнения:

Аналогично рассчитаем степень окисления «желтого» атома углерода в уксусной кислоте и «красного» в молекуле углекислого газа, учитывая, что степень окисления кислорода в органических веществах всегда равна -2 (кроме органических пероксидов, изучение которых в не входит в программу ЕГЭ):

Далее, аналогично, составим и решим два уравнения, учитывая, что заряд выделенного блока мы приняли равным нулю, а заряд молекулы углекислого газа, как и у любой другой молекулы, также нейтрален.

Таким образом, «желтый» атом углерода имел степень окисления до реакции, равную -1, а после +3.

«Красный» атом углерода изменил свою степень окисления с -2, на +4.

Учитывая, что марганец изменил свою степень окисления с +7 на +2, еще раз запишем схему реакции и составим электронный баланс. «Желтый» и «красный» атомы углерода, очевидно, всегда будут в соотношении 1 к 1, независимо от коэффициента перед органическим веществом, потому запишем их в одной строчке «полуреакции» окисления.

Перенесем коэффициенты из баланса:

Поскольку в левой части схемы мы видим два атома калия, в правой части схемы перед сульфатом калия коэффициент 1, ставить который не нужно. В правой части уравнения мы видим 3 сульфатных остатка, поэтому ставим перед серной кислотой коэффициент 3:

Осталось поставить коэффициент перед водой в правой части. Это можно сделать по кислороду или водороду на выбор. Поскольку мы уравняли число сульфатных остатков в левой и правой частях, то кислород в них можно не учитывать. Считаем только кислород в остальных соединениях. Слева мы видим 8 атомов кислорода (не считая кислород в серной кислоте). В правой части не считая воду — 4 атома кислорода. Поэтому перед водой коэффициент будет равен 4:

Сравнивая количества всех элементов слева и справа, видим, что все коэффициенты расставлены верно.

2-метилпропен + KMnO4 + H2SO4

Аналогично предыдущему примеру рассчитаем степени окисления углеродных атомов, которые изменили свою степень окисления:

Учитывая, что заряд каждого выделенного блока мы приняли равным нулю, составим и решим уравнения:

Аналогично поступим с продуктами окисления:

составим и решим уравнения:

Таким образом, «зеленый» атом углерода до реакции имел степень окисления, равную 0, после +2, «красный» изменил свою степень окисления с -2 на +4.

Далее запишем схему окисления и составим электронный баланс:

Перенесем коэффициенты из электронного баланса в схему:

Далее мы видим, что в левой части схемы 8 атомов калия, потому перед сульфатом калия поставим коэффициент 4.

Теперь можно заметить, что в правой части уравнения 12 сульфатных групп (8 в сульфате марганца, 4 в сульфате калия). Поэтому перед серной кислотой в левой части нужно поставить коэффициент 12:

Осталось поставить коэффициент перед водой. Сделаем это по кислороду. Количество сульфатных групп мы уравняли, потому кислород в них можно не учитывать. Слева мы видим 32 атома кислорода (8*4). В правой части уравнения, не считая воды и сульфатных групп, 15 атомов кислорода (5 в молекуле кетона и 10 в 5 молекулах углекислого газа). Таким образом, перед водой необходимо поставить коэффициент 17.

Посчитав водород слева и справа, мы убеждаемся, что коэффициенты расставлены верно.

Пропен + K2Cr2O7 + H2SO4

Состав продуктов будет точно таким же, как и в случае окисления перманганатом, за исключением того, что вместо сульфата марганца (II) образуется сульфат хрома (III). Запишем схему реакции и составим электронный баланс.

Перенесем коэффициенты из баланса в схему:

Далее уравняем калий, поставив коэффициент 5 перед сульфатом калия:

В правой части мы видим 20 сульфатных групп. Следовательно, перед формулой серной кислоты нужно поставить коэффициент 20:

Осталось поставить последний коэффициент перед формулой воды. Сделаем это, как и в двух предыдущих случаях, по кислороду, не считая кислород в сульфатных группах, поскольку их количества уравнены. В левой части мы видим 35 атомов кислорода. В правой части, не считая воды, 12 атомов кислорода (6 в трех молекулах CH3COOH и 6 в трех молекулах CO2). Таким образом, перед формулой воды нужно поставить коэффициент 23:

Посчитав водород слева и справа, мы убеждаемся, что коэффициенты расставлены верно.

2-метилпропен + K2Cr2O7 + H2SO4

Запишем схему реакции и электронный баланс:

Перенесем коэффициенты из баланса в схему:

Перед сульфатом калия поставим коэффициент 4, чтобы уравнять количества атомов калия в левой и правой частях схемы:

Перед серной кислотой поставим коэффициент 16, чтобы уравнять количество сульфатных групп:

Последний коэффициент перед водой поставим по кислороду, игнорируя сульфатные группы, поскольку их количество уравнено. Слева мы видим 28 атомов кислорода. Справа, не считая воды, 9 атомов кислорода. Таким образом, перед водой необходимо поставить коэффициент 19.

Далее, подсчитав водород в обеих частях уравнения, убеждаемся, что коэффициенты расставлены верно.

Реакции окисления алкенов

Эпоксиды (оксираны) — органические соединения, содержащие эпоксидную группу — насыщенный трёхчленный гетероцикл с одним атомом кислорода (по номенклатуре ИЮПАК гетероцикл оксиран).
По наличию связи С-О-С эпоксиды относятся к простым эфирам. Но, по сравнению с другими соединениями этого класса, эпоксиды обладают высокой реакционной способностью вследствие напряжённости трёхчленного цикла. Для них характерны реакции присоединения с раскрытием цикла под действием нуклеофильных агентов.

Номенклатура. Используются два способа построения названий эпоксидов.
1. Основу названия соединения составляет наименование главной углеродной цепи; наличие кислородного мостика указывают приставкой эпокси; при нумерации цепи атомам углерода трёхчленного цикла присваиваются наименьшие номера, например:

2. За основу названия принимается гетероцикл оксиран; фрагменты углеродной цепи рассматриваются как заместители; положение заместителей указывается наименьшими номерами.

    В этом случае приведённое выше соединение (1,2-эпоксибутан) получает название этилоксиран (нумерация атомов здесь не требуется).
Для простейших соединений сохраняются названия этиленоксид и пропиленоксид.

Эпоксиды находят широкое примение в органическом синтезе, благодаря способности вступать в разнообразные реакции. На присутствии эпоксидных групп в составе эпоксидных смол основано их отверждение.

алкенов и марганата калия (VII) (перманганат)

Если продукт имеет одну углеводородную группу и один водород

Например, предположим, что первая стадия реакции была:

В этом случае первая молекула продукта имеет метильную группу и водород, присоединенный к карбонильная группа. Это другой вид соединения, известного как альдегид.

Альдегиды легко окисляются с образованием карбоновых кислот, содержащих группу -COOH.Поэтому на этот раз реакция пойдет на следующую стадию с получением этановой кислоты, CH 3 COOH.

Кислотная структура была немного перевернута, чтобы она больше походила на то, как мы обычно рисуем кислоты, но общий эффект заключается в том, что между углеродом и водородом образовался кислород.

Общее влияние манганата калия (VII) на этот вид алкена составляет:

Очевидно, что если бы атом водорода был присоединен к обоим углеродам на концах углерод-углеродной двойной связи, вы бы получили две молекулы карбоновой кислоты, которые могут быть одинаковыми или разными, в зависимости от того, были ли одинаковые алкильные группы или разные.

Поиграйте с этим, пока вы не будете довольны этим. Нарисуйте несколько алкенов, каждый из которых имеет водород, присоединенный на обоих концах углерод-углеродной двойной связи. Различные алкильные группы - иногда одинаковые на каждом конце двойной связи, иногда разные. Окислите их, чтобы сформировать кислоты, и посмотрите, что вы получите.

Если продукт имеет два атома водорода, но не содержит углеводородной группы

Вы могли ожидать, что это произведет метановую кислоту, как в уравнении:

Но это не так! Это потому, что метановая кислота также легко окисляется раствором калия манганата (VII).На самом деле, он окисляет все это вплоть до углекислого газа и воды.

Таким образом, уравнение в таком случае может быть, например:

Точная природа другого продукта (в этом примере, пропанона) будет варьироваться в зависимости от того, что было присоединено к правому углероду в двойной связи углерод-углерод.

Если бы на обоих концах двойной связи было два атома водорода (другими словами, если бы у вас был этен), то все, что вы получили бы, - это углекислый газ и вода.

 

Резюме

Подумайте об обоих концах углерод-углеродной двойной связи по отдельности, а затем объедините результаты.

  • Если на одном конце связи две алкильные группы, эта часть молекулы даст кетон.

  • Если есть одна алкильная группа и один водород на одном конце связи, эта часть молекулы даст карбоновую кислоту.

  • Если на одном конце связи находятся два атома водорода, эта часть молекулы даст углекислый газ и воду.

 

Какой смысл всего этого?

Возвращение к результатам поможет вам определить структуру алкена. Например, алкен C 4 H 8 имеет три структурных изомера:

Подумайте, какие из них дадут каждый из следующих результатов, если их обработать горячим концентрированным раствором манганата калия (VII). Приведенные выше изомеры представляют собой , , а не , в порядке A, B и C.

Не читайте ответы в зеленой рамке, пока не попробуете.

  • Изомер А дает кетон (пропанон) и диоксид углерода.

  • Изомер B дает карбоновую кислоту (пропановую кислоту) и диоксид углерода.

  • Изомер C дает карбоновую кислоту (этановую кислоту).

.

Перманганат калия (Kmno4) | Использование, физические и химические свойства перманганата калия

Что такое перманганат калия?

  • Перманганат калия - это универсальное химическое соединение пурпурного цвета.

  • Это калиевая соль марганцевой кислоты.

  • Также известный как перманганат калия, он имеет много других названий, таких как минерал хамелеон, кристаллы Конди и гипермаган.

  • Перманганат калия был впервые произведен немецким химиком Иоганном Рудольфом Глаубером в 1659 году, но вскоре был забыт.Это было вновь открыто британским химиком Генри Конди, который производил дезинфицирующие средства, известные как «кристаллы Конди», перманганат калия стал большим успехом.

  • Обладает окислительными свойствами, поэтому нашел широкое применение в медицинской и химической промышленности.

  • Его химическая формула KMnO4.

Физические свойства перманганата калия - KMnO4

  • Это химическое соединение ярко-фиолетового или бронзового цвета.

  • Имеет плотность 2.7 г / мл и его молярная масса составляет 158,034 г / моль.

  • Состав не имеет запаха, то есть не имеет запаха, но имеет сладкий вкус.

  • Имеет высокую температуру плавления 2400 ° С.

  • В основном встречается в виде порошка, кристаллов или таблеток.

Химические свойства перманганата калия

  • Перманганат калия растворим в ацетоне, воде, пиридине, метаноле и уксусной кислоте.Он также легко растворим в неорганических растворителях.

  • Имеет насыщенный фиолетовый цвет в концентрированном растворе и розовый цвет в разбавленном растворе.

Концентрированные и разбавленные растворы перманганата калия

  • Не горюч, но поддерживает горение других веществ.

  • В нормальных условиях это высокостабильное соединение, но при нагревании разлагается с образованием MnO2 и выделяет кислород.

2KMnO4 ∆ → K2MnO4 + MnO2 + O2

  • Это сильный окислитель (соединение, которое может легко переносить кислород в другие вещества), образующий темно-коричневый диоксид марганца (MnO2), который окрашивает все, что является органические.Он может легко принимать электроны от других веществ.

  • Реагирует бурно с серной кислотой, что приводит к взрыву.

  • Немедленно реагирует с глицерином и простыми спиртами с образованием пламени и дыма.

Структура перманганата калия - KMnO4

  • Перманганат калия представляет собой ионное соединение, состоящее из катиона калия (K +) и перманганатного аниона (MnO4-).

  • В перманганатном анионе (MnO4-) атом марганца связан с четырьмя атомами кислорода через три двойные связи и одну одинарную связь.Его структура может быть написана как ниже.

  • Степень окисления марганца в этой соли +7.

  • Кристаллическая структура твердого KMnO4 является ромбической. Каждая структура MnO4 присутствует в тетраэдрической геометрии.

Реакции перманганата калия (KMnO4)

Большинство реакций с перманганатом калия представляют собой окислительно-восстановительные реакции (химическая реакция, в которой одно вещество окисляется, а другое восстанавливается).

KMnO4 может окислять многие неорганические соединения.Среда раствора играет важную роль в определении продуктов реакции.

2KMnO4 + 5Na2SO3 + 3h3SO4🡪 2MnSO4 + 5Na2SO₄ + K2SO4 + 3h3O

2KMnO4 + 3K2SO3 + h3O 🡪 3K2SO4 + 2MnO2 + 2KOH

.

Улучшенное окисление алкенов до диолов перманганатом калия с использованием фазового катализа

Катализ фазового переноса (PTC) и краун-эфиры - это два новых метода, которые используются для обеспечения растворимости неорганических солей в органических растворителях. Старкс сообщил, что Концевые олефины могут быть окислены KMnO 4 с использованием ПТК до более короткой карбоновой кислоты на один углерод 1 . Точно так же Сэм и Симмонс обнаружили, что комплекс дициклогексил-18-краун-6 эфира KMnO 4 эффективен для количественного окисления внутренних олефинов до двухосновных кислот 2 .

Мы хотели бы сообщить, что PTC можно использовать для окисления внутренних олефинов основным KMnO 4 до соответствующих цис -1,2-гликолей с выходом 50%. В то время как окисление олефинов до цис -1,2-гликолей основным KMnO 4 упоминается во многих учебниках по органике для студентов 3 , это происходит лишь с некоторыми исключениями (такими как окисление длинноцепочечных мононенасыщенных жирных кислот ) 4 плохая реакция. Cope, например, сообщает, что цис -циклооктен окисляется до цис -1,2-циклооктандиола водным основным KMnO 4 - с выходом всего 7% 5 .

Это привело к появлению других методов для достижения этого превращения, таких как тетраоксид осмия, который является дорогим и токсичным 6,7,8 или процедура Вудворда, которая включает реакцию олефин с йодом и ацетатом серебра во влажной уксусной кислоте 9,10 .

Экспериментальный

Окисление цис -циклооктена основным KMnO 4 является примером нового метода ПТК.

цис -циклооктен (11 грамм, 0.1 моль) в 100 мл DCM помещали в трехгорлый патрон объемом 1 л. нижняя колба снабжена механической мешалкой. К этому добавляли 100 мл 40% водного раствора NaOH и 1 грамм хлорида бензилтриэтиламмония 11 (катализатор ПТК). Реакционную смесь охлаждали до 0 ° C на бане с ледяной солью. Небольшие порции KMnO 4 (15,8 грамма, 0,1 моль) добавляли в течение двух часов при интенсивном перемешивании и поддержании реакции. температура на уровне 0С. Реакционную колбу заполняли льдом и оставляли перемешиваться в течение ночи.Осадок MnO 2 растворяли реакцией с SO 2 . Затем добавляли эфир (500 мл) и слои разделены. Затем водный слой трижды экстрагировали эфиром по 150 мл. Объединенные эфирные экстракты сушили над MgSO 4 , фильтровали и растворитель удаляют упариванием при пониженном давлении. Выделенное таким образом белое твердое вещество (9-9,5 г) перекристаллизовывали из смеси этилацетат / n -гептан с получением 7,8 г (выход 50%) цис- -1,2-циклооктандиола, т.пл. 76-77 ° C 5 .Его спектральные свойства, ИК и ЯМР также соответствовали заданной структуре.

Подобные выходы были получены при окислении транс -циклододецена с получением транс -1,2-циклододекандиола, т.пл. 98-99 ° C 12 . Однако более низкие выходы достигаются, если продукт гликоль хорошо растворим в водной фазе. Таким образом, при окислении циклогексена в дополнение к выходу 15% желаемого цис -1,2-циклогександиола также получают значительные количества адипиновой кислоты.

,

Смотрите также